Advertisement

Properties of Multiply Excited States

  • C. A. Nicolaides
  • Y. Komninos
  • M. Chrysos
  • G. Aspromallis
Part of the NATO ASI Series book series (NSSB, volume 212)

Abstract

Intense laser light or the combination of more than one laser beams can send an atom into highly excited states whose electronic structure can be characterised as multiply or inner shell excited. The role of such states on the multiphoton ionization process has been of interest during the past few years. In this article, we outline the theoretical framework for the multielectron analysis of some of their properties which are relevant to current developments of laser spectroscopy.

Keywords

Multiphoton Ionization Inelastic Cross Section Radial Correlation Doubly Excited State Autoionization Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Aleksakhin, P. Zapesochnyi and V.V. Suran, Sov.PhysJETP Lett. 26, 11 (1977).ADSGoogle Scholar
  2. 2.
    N.B. Delone, V.V. Suran an BA. Zon, in ”Multiphoton Ionization of Atoms” eds.S.L. Chin and P. Lambropoulos, Acad.Pr.(1984), p.235.Google Scholar
  3. 3.
    A. L’Huillier, L.A. Lompre, G. Mainfray and C. Manus, Phys.Rev. A27, 2503 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    K. Boyer, H. Egger, T.S. Luk, H. Pummer and C.K. Rhodes, J. Opt.Soc.Am. Bl,3 (1984).ADSCrossRefGoogle Scholar
  5. T.S. Luk, V Johann, H. Egger, H. Pummer, C.K. Rhodes, Phys.Rev. A32, 214 (1985).ADSCrossRefGoogle Scholar
  6. 5.
    P Agostini and G. Petite, J. Phys. B17, L811 (1984).ADSGoogle Scholar
  7. 6.
    L.A. Lompre and G. Mainfray, in ”Fundamentals of laser interactions” ed. F. Ehlotzky, Springer-Verlag (1985).Google Scholar
  8. 7.
    P. Lambropoulos and X. Tang, J.Opt.Soc.Am. B4, 821 (1987).ADSCrossRefGoogle Scholar
  9. 8.
    K. Boyer, et al in ”Multiphoton processes” eds. S.J. Smith and P.L. Knight, Cambridge Univ.(1988) p.58.Google Scholar
  10. 9.
    P. Lambropoulos and P. Zoller, in ”Multiphoton Ionization of Atoms” eds.S.L. Chin and P. Lampropoulos, Acad.Pr.(1984), p. 189.Google Scholar
  11. 10.
    CA. Nicolaides, Phys.Rev. A6, 2078 (1972).ADSCrossRefGoogle Scholar
  12. 11.
    CA. Nicolaides and D.R. Beck, J.Chem.Phys. 66, 1982 (1977).ADSCrossRefGoogle Scholar
  13. 12.
    CA. Nicolaides, Chem.Phys.Lett. 101, 435 (1983).ADSCrossRefGoogle Scholar
  14. CA. Nicolaides and D.R. Beck, Chem.Phys.Lett., 36, 79 (1975).ADSCrossRefGoogle Scholar
  15. 13.
    Y. Komninos, N. Makri and CA. Nicolaides, Z. Phys. D2, 105 (1986).ADSGoogle Scholar
  16. C.A. Nicolaides, N. Makri and Y. Komninos, J. Phys. B20, 4963 (1987).ADSGoogle Scholar
  17. 14.
    CA. Nicolaides, in ”Giant Resonances in Atoms, Molecules and Solids”, eds.J.P. Connerade, J.M. Esteva and R.C. Karnatak, Plenum (1987), p.213.Google Scholar
  18. 15.
    Y. Komninos and CA. Nicolaides, J. Phys. B19, 1701 (1986).ADSGoogle Scholar
  19. Y. Komninos, M. Chrysos and CA. Nicolaides, J. Phys. B20, L791 (1987).ADSGoogle Scholar
  20. 16.
    M.Ya. Amusia, in ”Adv.At.Mol.Phys. 17, 1, (1981).ADSCrossRefGoogle Scholar
  21. 17.
    F. Wuilleumier, M.Y. Adam, N. Sandner and V. Schmidt, J.Phys.Lett. 41, 373 (1980).CrossRefGoogle Scholar
  22. 18.
    C.N. Clark, J.D. Fassett, T.B. Lucatorto, LJ. Moore and W.W. Smith J.Opt.Soc.Am. B2, 891 (1985).ADSCrossRefGoogle Scholar
  23. 19.
    Th. Mercouris and CA. Nicolaides, Z. Phys. D5, 1 (1987).ADSGoogle Scholar
  24. 20.
    E.U. Condon and G.H. Shortley ”Theory of Atomic Spectra”, Cambridge Univ.Press(1935); Chapter 15.Google Scholar
  25. 21.
    GJ. Schulz, Rev.Mod.Phys. 45, 378 (1973).ADSCrossRefGoogle Scholar
  26. 22.
    R.P. Madden and K. Codling, Astroph.J. 141, 364 (1965).ADSCrossRefGoogle Scholar
  27. 23.
    U. Fano, Phys.Rev. 124, 1866 (1961).ADSCrossRefMATHGoogle Scholar
  28. 24.
    U. Fano and F. Prats, J. Natl.Acad.Sci.(India) A33, 533 (1963).Google Scholar
  29. D.E. Ramaker and D.M. Schrader, Phys.Rev. A9, 1980 (1974).ADSCrossRefGoogle Scholar
  30. 25.
    CA. Nicolaides and D.R. Beck, Int J.Qu.Chem. 14, 457,(1978).CrossRefGoogle Scholar
  31. 26.
    Y. Komninos and C.A. Nicolaides, Z. Phys. D4, 301 (1987).ADSGoogle Scholar
  32. Y. Komninos and C.A. Nicolaides, Phys.Rev. A34, 1995 (1986).ADSCrossRefGoogle Scholar
  33. 27.
    T.F. O’Malley and S. Geltman, Phys.Rev. 137, A1344 (1965).CrossRefGoogle Scholar
  34. 29.
    G.S. Ezra and R.S. Berry, Phys.Rev. A28, 1974 (1983).ADSCrossRefGoogle Scholar
  35. 30.
    G Aspromallis, Y. Komninos and CA. Nicolaides, J. Phys. B17, L151 (1984).ADSGoogle Scholar
  36. C.A. Nicolaides and G. Aspromallis, Phys.Scripta 38, 55 (1988).ADSCrossRefGoogle Scholar
  37. 31.
    C.A. Nicolaides in ”Advanced Theories and Computational Approaches to the Electronic Structure of Molecules”, ed.C.E. Dykstra, Reidel (1984), p. 161.Google Scholar
  38. 32.
    CA. Nicolaides and Y. Komninos, Chem.Phys.Lett. 80, 463 (1981).ADSCrossRefGoogle Scholar
  39. C.A. Nicolaides IEEE J.Qu.Elect. 19, 1781 (1983).ADSCrossRefGoogle Scholar
  40. 33.
    D.R. Beck and C.A. Nicolaides, Chem.Phys.Lett. 59, 525 (1978).ADSCrossRefGoogle Scholar
  41. 34.
    Y. Komninos, G. Aspromallis and C.A. Nicolaides, Phvs.Rev. A27,1865 (1983).ADSCrossRefGoogle Scholar
  42. 35.
    C.A. Nicolaides, Y. Komninos and D.R. Beck, Phys.Rev. A27, 3044 (1983).ADSCrossRefGoogle Scholar
  43. 36.
    Y. Komninos, M. Chrysos and C.A. Nicolaides, Phys.Rev. A38, 3182 (1988).ADSCrossRefGoogle Scholar
  44. 37.
    C.A. Nicolaides, Y. Komninos and D.R. Beck, Phys.Rev. A24, 1103 (1981).ADSCrossRefGoogle Scholar
  45. 38.
    CA. Nicolaides, Y. Komninos and Th. Mercouris, Int.J.Qu.Chem. S15, 355 (1981).Google Scholar
  46. CA. Nicolaides, Y. Komninos and Th. Mercouris, Int.J.Qu.Chem. 26, 1017 (1984).CrossRefGoogle Scholar
  47. 39.
    C.A. Nicolaides and Th. Mercouris, Phys.Rev. A36, 390 (1987).ADSCrossRefGoogle Scholar
  48. C.A. Nicolaides and Th. Mercouris, Phys.Rev. A32, 3247 (1985).ADSCrossRefGoogle Scholar
  49. 40.
    CA. Nicolaides and Th. Mercouris, chapter in this book.Google Scholar
  50. 41.
    E. Holoien, Proc.Phys.Soc. 51, 357 (1958).ADSCrossRefGoogle Scholar
  51. 42.
    E. Holoien and JJ. Midtal, J.Chem.Phys. 45, 2209 (1966).ADSCrossRefGoogle Scholar
  52. 43.
    H.S. Taylor, G.V. Nazaroff and A. Golebiewski, J. Chem.Phys. 45, 2872 (1966).ADSCrossRefGoogle Scholar
  53. 44.
    L. Lipsky and A. Russek, Phys.Rev. 141, 59 (1966).ADSCrossRefGoogle Scholar
  54. 45.
    A.K. Bhatia and A. Temkin, Phys.Rev. A23, 3361 (1981).ADSCrossRefGoogle Scholar
  55. 46.
    O. Robaux, J. Phys. B20, 2347 (1987).ADSGoogle Scholar
  56. 47.
    C. Froese-Fischer, Comp.Phys.Comm. 4, 107 (1972).ADSCrossRefGoogle Scholar
  57. 48.
    E.g., see the articles in the book ”Advanced Theories and Computational Approaches to the Electronic Structure of Molecules”, ed.C.E. Dykstra, Reidel(1984).Google Scholar
  58. 49.
    G.H. Wannier, Phys.Rev. 90, 817 (1953).ADSCrossRefMATHGoogle Scholar
  59. 50.
    R. Peterkop, J.Phys. B4, 513 (1971).ADSGoogle Scholar
  60. 51.
    A.R.P. Rau, Phys.Rev. A4, 207 (1971).ADSCrossRefGoogle Scholar
  61. 52.
    S. Crejanovic and F.H. Read, J. Phys. B7, 1841 (1974).ADSGoogle Scholar
  62. 53.
    H. Kossmann, V. Schmidt and T. Andersen, Phys.Rev.Lett. 60, 1266 (1988).ADSCrossRefGoogle Scholar
  63. 54.
    U. Fano, J. Phys. B7, L401 (1974).ADSGoogle Scholar
  64. 55.
    J.M. Feagin and J. Macek, J. Phys. B17, L245 (1984).ADSGoogle Scholar
  65. 56.
    Y. Komninos, unpublished.Google Scholar
  66. 57.
    C.A. Nicolaides, M. Chrysos and Y. Komninos, J.Phys. B21 L73 (1988).ADSGoogle Scholar
  67. C.A. Nicolaides, M. Chrysos and Y. Komninos, Phys.Rev. A39, 1523 (1989).ADSCrossRefGoogle Scholar
  68. 58.
    Y.K. Ho and J. Callaway, Phys.Rev. A34, 130 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. A. Nicolaides
    • 1
  • Y. Komninos
    • 1
  • M. Chrysos
    • 1
  • G. Aspromallis
    • 1
  1. 1.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations