Advertisement

Atoms in Static Electric and Magnetic Fields: The Experimental Aspect

  • J. Pinard
Part of the NATO ASI Series book series (NSSB, volume 212)

Abstract

Thanks to the advent of dye laser in 1971, properties of high lying states of atoms became, relatively soon, one of the forefront topics in atomic physics and numerous experimental studies were undertaken all around the world. These states called “Rydberg states” have few well established characteristics: they have a long life time and a very weak radiative transition probability connects them to the ground state, they are weakly bound, the bending energy varying as 1/n2 so that they are very sensitive to external perturbations and in particular to static electric field F and magnetic field B. A small electric field enables the ionization of the Rydberg atoms and thus, offers a very good means to detect them with an efficiency much higher then the current fluorescence detection method. For this reason, electric field ionization process and stark effect of Rydberg states were the first topics to be studied1,2. On a theoretical point of view the hydrogen was first analyzed and thanks to the separability of the hamiltonian exact numerical solutions were found3 for the spectrum below and above the zero field ionization limit. Nevertheless, there are still some controversies about the structure of the modulated continuum experimentally observed above the threshold; an example of this is reported in this issue (R. J. Damburg). Concerning experiments, at the beginning they have been performed mainly on alkali, for obvious reasons: they are easy to produce in atomic beam, much easy to excite from the ground state than hydrogen etc... However the alkali problem is not entirely identical to the coulomb problem and rapidly the existence of an electronic core has shown to be at the origin of new phenomenons and sometimes very surprising ones which will be described in this text. The problem of non-hydrogenic atoms has been treated in great details by D. A. Harmin4 and reported in this issue.

Keywords

Electric Field Pulse Atomic Beam Rydberg State Alkali Atom Field Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1-.
    T. W. Ducas, M. G. Littman, R. R. Freeman and D. Kleppner, Phys. Rev. Lett. 35, 366 (1975).ADSCrossRefGoogle Scholar
  2. 2-.
    H. T. Duong, S. Liberman and J. Pinard, Opt. Commun. 18, 533 (1976).ADSCrossRefGoogle Scholar
  3. 3-.
    E. Luc-Koenig and A. Bachelier, J. Phys. B 13 1743 (1980)MathSciNetADSCrossRefGoogle Scholar
  4. E. Luc-Koenig and A. Bachelier, J. Phys. B 13 1769 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. 4-.
    D. A. Harmin, Phys. Rev. Lett. 49, 128 (1982).ADSCrossRefGoogle Scholar
  6. D. A. Harmin, Phys. Rev. Lett. 30, 2413 (1984).ADSGoogle Scholar
  7. 5-.
    W. R. S. Garton and F. S. Tomkins, Astrophys. J. 158, 839 (1969).ADSCrossRefGoogle Scholar
  8. 6-.
    M. L. Zimmerman, M. M. Kask, D. Kleppner, Phys. Rev. Lett. 45, 1092 (1980).ADSCrossRefGoogle Scholar
  9. 7-.
    E. A. Solov’ev, JETP Lett. 34, 265 (1981).ADSGoogle Scholar
  10. E. A. Solov’ev, Sov. Phys. JETP 55, 1017 (1982).Google Scholar
  11. 8-.
    A. Holle, G. Wiegbusch, J. Main, B. Hager, H. Rottke, K. H. Welge, Phys. Rev. Lett. 56, 2594 (1986).ADSCrossRefGoogle Scholar
  12. J. Main, G. Wiesbusch, A. Holle and K. H. Welge, Phys. Rev. Lett. 57, 2789 (1986).ADSCrossRefGoogle Scholar
  13. A. Holle, G. Wiesbusch, J. Main, K. H. Welge, G. Zeller, G. Wunner, T. Ertl and H. Ruder, Z. Phys. D 5, 279 (1987).ADSCrossRefGoogle Scholar
  14. 9-.
    D. Delande and J. C. Gay, Phys. Rev. Lett. 57, 26 (1986).Google Scholar
  15. D. Delande and J. C. Gay, Commun. At. Mol. Phys. 19, 35 (1986).CrossRefGoogle Scholar
  16. 10-.
    M. Rausch, V. Taubenberg, R. Gebauer and G. Lewin, Naturwiss 18, 418 (1930).ADSGoogle Scholar
  17. 11-.
    H. A. Bethe and E. E. Salpeter, Quantum mechanics of one and two electron atoms, Springer Verlag 1957.Google Scholar
  18. 12-.
    J. Pinard and S. Liberman, Opt. Commun. 20, 344 (1977).ADSCrossRefGoogle Scholar
  19. 13-.
    S. Liberman and J. Pinard, Phys. Rev. A 20, 507 (1979).ADSCrossRefGoogle Scholar
  20. 14-.
    M. G. Littman, M. M. Kash and K. Kleppner, Phys. Rev. Lett. 41, 103 (1978).ADSCrossRefGoogle Scholar
  21. 15-.
    S. Feneuille, S. Liberman, J. Pinard and A. Taleb, Phys. Rev. Lett. 42, 1404 (1979).ADSCrossRefGoogle Scholar
  22. 16-.
    M. L. Zimmerman, M. G. Littman, M. M. Kach and J. Kleppner, Phys. Rev. A 20, 2251 (1979).ADSCrossRefGoogle Scholar
  23. 17-.
    T. F. Gallagher, I. M. Humphrey, R. M. Hill, S. A. Edelstein, Phys. Rev. Lett. 37, 1465 (1976).ADSCrossRefGoogle Scholar
  24. J. L. Vialle and H. T. Duong, J. Phys. B 12, 1407 (1979).ADSCrossRefGoogle Scholar
  25. 18-.
    T. H. Jeys, G. W. Foltz, K. A. Smith, E. J. Beiting, F. G. Kellert, F. B. Dunning and R. F. Stebbings, Phys. Rev. Lett. 44, 390 (1980).ADSCrossRefGoogle Scholar
  26. 19-.
    S. Feneuille, S. Liberman, E. Luc-Koenig, J. Pinard, A. Taleb, J. Phys. B 15, 1205 (1982).ADSCrossRefGoogle Scholar
  27. 20-.
    J. Y. Lin, P. McNicholl, D. A. Martin, J. Ivri, T. Bergeman and H. J. Metcalf, Phys. Rev. Lett. 55, 189 (1985).ADSCrossRefGoogle Scholar
  28. P. McNicholl, T. Bergeman and H. J. Metcalf, Phys. Rev. A 37, 3302 (1988).ADSCrossRefGoogle Scholar
  29. 21-.
    R. R. Freeman and N. P. Economou, Phys. Rev. A 20, 2356 (1979).ADSCrossRefGoogle Scholar
  30. 22-.
    C. Blondel, R. J. Champeau, C. Delsart, J. Phys. B 18, 2403 (1985).ADSCrossRefGoogle Scholar
  31. 23-.
    E. Luc-Koenig and A. Bachelier, Phys. Rev. Lett. 43, 921 (1979).ADSCrossRefGoogle Scholar
  32. 24-.
    P. M. Koch, Phys. Rev. Lett. 41, 99 (1978).ADSCrossRefGoogle Scholar
  33. P. M. Koch and D. R. Mariani, Phys. Rev. Lett. 46, 1275 (1981).ADSCrossRefGoogle Scholar
  34. 25-.
    R. J. Damburg and V. V. Kolosov, J. Phys. B 12, 2637 (1979).ADSCrossRefGoogle Scholar
  35. 26-.
    W. L. Glab, K. Ng, D. Yao, M. H. Nayfeh, Phys. Rev. A 31, 3677 (1985).ADSCrossRefGoogle Scholar
  36. 27-.
    H. Rottke and K. H. Welge, Phys. Rev. a 33, 301 (1986).ADSCrossRefGoogle Scholar
  37. 28-.
    L. Cabaret, C. Delsart and C. Blondel, Opt. Commun. 61, 116 (1987).ADSCrossRefGoogle Scholar
  38. C. Delsart, L. Cabaret, C. Blondel and R. J. Champeau, J. Phys. B 20, 4699 (1987).ADSCrossRefGoogle Scholar
  39. 29-.
    A. R. Edmonds, J. Phys., Paris Colloque C4, 31 71 (1970).Google Scholar
  40. 30-.
    A. R. Edmonds and R. A. Pullen, Preprint Imperial College, London (1980), unpublished.Google Scholar
  41. 31-.
    K. T. Lu, F. S. Tomkins, H. M. Croswhite and M. Croswhite, Phys. Rev. Lett. 41, 1034 (1978).ADSCrossRefGoogle Scholar
  42. K. J. Drinkwater, J. Hormes, D. D. Burgess, J. P. Connerade and R. C. M. Learner, J. Phys. B 17, L439 (1984).ADSCrossRefGoogle Scholar
  43. 32-.
    J. C. Gay, D. Delande, F. Biraben, J. Phys. B 13, L729 (1980).Google Scholar
  44. 33-.
    J. Neukammer, H. Rinneberg, K. Vietzke, A. Konig, H. Hieronymus, M. Kohi, H. J. Grabka and G. Wunner, Phys. Rev. lett. 59, 2947 (1987).ADSCrossRefGoogle Scholar
  45. 34-.
    J. B. Delos, S. K. Knudson and D. W. Noid, Phys. Rev A 30, 1208 (1984).ADSCrossRefGoogle Scholar
  46. 35-.
    D. R. Herrick, Phys. Rev. A 26, 329 (1982).MathSciNetADSCrossRefGoogle Scholar
  47. 36-.
    J. C. Gay and D. Delande, Comments At. Mol. Phys. 13, 275 (1983).Google Scholar
  48. 37-.
    D. Delande and J. C. Gay, J. Phys. B 17, L335 (1984).MathSciNetADSCrossRefGoogle Scholar
  49. D. Delande and J. C. Gay, J. Phys. B 19, L173 (1986).ADSCrossRefGoogle Scholar
  50. 38-.
    P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas and S. Liberman, Phys. Rev. Lett. 56, 1124 (1986).ADSCrossRefGoogle Scholar
  51. 39-.
    J. J. Labarthe, J. Phys. B. 14, 1467 (1981).CrossRefGoogle Scholar
  52. 40-.
    P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas and S. Liberman, Phys. Rev. Lett. 56, 1464 (1986).ADSGoogle Scholar
  53. 41-.
    P. A. Braun and E. A. Solov’ev, Sov. Phys. JETP 59, 38 (1984).Google Scholar
  54. 42-.
    P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas and S. Liberman, J. Phys. B 21, 3473 (1988).MathSciNetADSCrossRefGoogle Scholar
  55. P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas and S. Liberman, J. Phys. B 21, 3499 (1988).MathSciNetADSCrossRefGoogle Scholar
  56. P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas and S. Liberman, J. Phys. B 21, 3523 (1988).MathSciNetADSCrossRefGoogle Scholar
  57. 43-.
    D. Wintgen and H. Friedrich, Physics of Atoms and Molecules, ed. K. T. Taylor, Plenum 1987.Google Scholar
  58. 44-.
    D. Kleppner, Proceedings of the ELICAP Conference, “Symposium J. Brossel”, Paris 1988, to be published.Google Scholar
  59. 45-.
    P. Cacciani, thèse, Orsay 1984.Google Scholar
  60. 46-.
    J. Pinard, P. Cacciani, S. Liberman, E. Luc-Koenig and C. Thomas, Physics of Atoms and Molecules, éd. K. T. Taylor, Plenum 1987.Google Scholar
  61. 47-.
    G. R. Welch, M. M. Kash, Chun-Ko Iu, Long Hsu and D. Kleppner, Phys. Rev. Lett. 62, 893 (1989).ADSCrossRefGoogle Scholar
  62. 48-.
    D. Delande and J. C. Gay, Phys. Rev. Lett. 59, 1809 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Pinard
    • 1
  1. 1.Laboratoire Aimé CottonOrsay CédexFrance

Personalised recommendations