Advertisement

Investigations on the Topographic and Spectroscopic Imaging by the Scanning Tunneling Microscope

  • M. Hietschold
  • O. Pester
  • D. Porezag
  • M. Röder
  • H. Sbosny
  • K. Walzer
  • L. Koenders

Abstract

We present theoretical and experimental results on the imaging capabilities of the scanning tunneling microscope (STM). First, we report on the metrological application of the STM to defined probing of surface profiles on a nanometer scale. For a well-defined tip shape, a systematical quantitative analysis can be made to obtain quite accurate measurements, at least in some cases. The second example we consider is organic molecules imaged with submolecular resolution at ambient conditions. Pictures obtained experimentally are interpreted by Hartree-Fock calculations for (oxy-)cyano-biphenyl-alkanes and for metal-phthalocyanines. Moreover, new spectroscopic results — only accessible under ultrahigh vacuum (UHV) — are predicted theoretically.

Keywords

Scanning Tunneling Microscope Highly Orient Pyrolytic Graphite Total Electron Density Scanning Tunneling Spectroscopy Sample Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I lietschold, O. Pester, W. Vollmann, A. Heilmann, P. Stäbeler, H. Sbosny, X. Grählert, H.U.Sonntag, A. Bruska, B.Winzer, T. Schimmel, and L. Koenders, STM and AFM investigations on organic-material thin-films and adsorbate particles in air, in: “Atomic Force Microscopy/Scanning Tunneling Microscopy,” Samuel H. Cohen, Mona T. Bray, and Marcia L. Lightbody, eds., Plenum Picas, NY, 43–52 (1994).Google Scholar
  2. 2.
    J. Tcrsoff, D.R. Hamann, Theory of the scanning tunneling microscope, Phys.Rev. B31, 805 (1985).CrossRefGoogle Scholar
  3. 3.
    J. Bardeen, Tunnelling from a many-particle point of view, Phys.Rev.Lett. 6, 67 (1961).CrossRefGoogle Scholar
  4. 4.
    H. Sbosny, L. Koenders, M. I lietschold, Calculation of STM profiles for the nanometrology, Thin Solid Filets 264, 273 (1995).CrossRefGoogle Scholar
  5. 5.
    G. Reiss, F. Schneider, J.Vancea, H. Hoffmann. Scanning tunneling microscopy on rough surfaces: deconvolution of constant current images, Appl.Phys.Len.. 57, 867 (1990).Google Scholar
  6. 6.
    M. Hietschold, K. Walzer, D. Porezag, Scanning tunneling microscopy on liquid-crystal films deposited on layered material surfaces, Scanning 17, V53 (1995); also M. Hietschold, K. Walzer, Molecular imaging of ordered liquid crystal structures on layered materials by STM at ambient conditions, J. Vac. Sci Technol. B. (in press).Google Scholar
  7. 7.
    D.P.I. Smith, J.K.H. I Iörber, G. Binnig, H. Nejoh, Structure registry and imaging mechanism of alkylcyanobiphenyl molecules by tunneling microscopy, Nature 344, 641 (1990).CrossRefGoogle Scholar
  8. 8.
    M. I-Iictschold, D. Porezag, G. Wolf, Calculation of molecular-orbitals of metal-phthalo-cyanines and (oxy-)cyano-biphenyl-alkanes in relation to scanning tunneling spectroscopy, to be published.Google Scholar
  9. 9.
    O. Pester, D. Porezag, M. 1-lietschold, Molecular-resolution images of copper-and lead-phthalocyanine single crystals by atomic-force microscopy, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Hietschold
    • 1
  • O. Pester
    • 1
  • D. Porezag
    • 1
  • M. Röder
    • 1
  • H. Sbosny
    • 1
  • K. Walzer
    • 1
  • L. Koenders
    • 2
  1. 1.Solid Surfaces Analysis Group Institute of PhysicsTechnical University of Chemnitz-ZwickauGermany
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations