Advertisement

Visualization of the Surface Degradation of Biomedical Polymers in Situ with an Atomic Force Microscope

  • K. M. Shakesheff
  • M. C. Davies
  • A. Domb
  • C. J. Roberts
  • A. J. Shard
  • S. J. B. Tendler
  • P. M. Williams

Abstract

The ability of the atomic force microscope (AFM) to observe dynamic polymer/liquid interfaces has been utilized to visualize in situ morphological changes occurring during the biodegradation of polymer surfaces. Using this technique we demonstrate the differential rate of degradation of amorphous and crystalline material and study the kinetics of erosion of an immiscible polymer blend. The use of atomic force microscopy in this applied area of research is furthering our knowledge of the importance of the relationship between surface morphology and degradation kinetics and promises to become an invaluable tool in the evaluation of novel biodegradable materials.

Keywords

Atomic Force Microscope Atomic Force Microscope Image Isotactic Polypropylene Immiscible Polymer Force Microscopy Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L D. Snetivy, H. Yang, B. Glomm, and G.J. Vaneso, Short-range order in extended-chain crystals of polyoxymethylene from a true molecular perspective: An atomic force microscopy study, J. Mater. Chem. 4, 55–59 (1994).CrossRefGoogle Scholar
  2. 2.
    B.K. Annis, J.R. Reffner, and B. Wunderlich, Atomic force microscopy of extended chain crystals of polyethylene, J. Polym. Sci., Part B, 31, 93 97 (1993).Google Scholar
  3. 3.
    W. Stocker, S.N. Magonov, H.J. Cantow, J.C. Wittman and B. Lotz, Contact faces of epitaxially crystallized alpha-and gamma-phase isotactic polypropylene observed by atomic force microscopy, Macromolecules, 26, 5915–5923 (1993).CrossRefGoogle Scholar
  4. 4.
    S.S. Sheiko. M. Moller, H.-J. Cantow, and S.N. Magonov, Scanning force microscopy of nanofibrillar structure of drawn polyethylene tapes: 1. Different modes and tips, Polym. Bull., 31, 693–698 (1993).CrossRefGoogle Scholar
  5. 5.
    Saraf R.F. Early-stage phase separation in polyimide precursor blends: An atomic force microscopy study, Macromolecules, 26, 3623–3630 (1993).CrossRefGoogle Scholar
  6. 6.
    R.M. Ovemey, E. Meyer, J. Frommer. D. Brodbeck, R. Luthi, L. Howald, H.-J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh, Friction measurements on phase-separated thin films with a modified atomic force microscope, Nature, 359, 133–135 (1992).CrossRefGoogle Scholar
  7. 7.
    R.M. Ovemey, E. Meyer, J. Frommer. D. Brodbeck, R. Luthi, L. Howald, H.-J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh, Force microscopy study of friction and elastic compliance of phase-separated organic thin films, Langmuir, 10, 1281–1286 (1994).CrossRefGoogle Scholar
  8. 8.
    B. Drake, C.B. Prater, A.L. Weisenhom, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, Imaging crystals, polymers and processes in water with the atomic force microscope, Science, 1586–1589 (1989).Google Scholar
  9. 9.
    G.J. Leggett, M.C. Davies, D.E. Jackson, C.J. Roberts, and S.J.B. Tendler, Scanning probe microscopy of polymeric biomaterials, Trends Polym. Sci., 1, 115–120 (1993).Google Scholar
  10. 10.
    K.W. Leong, and R. Langer, Polymeric controlled drug delivery, Advanced Drug Delivery Reviews, 1, 199–233 (1987).CrossRefGoogle Scholar
  11. 11.
    R. Langer, New Methods of Drug Delivery, Science, 249, 1527–1533 (1990).CrossRefGoogle Scholar
  12. 12.
    J. Heller, Controlled drug release from poly(ortho esters)–A surface eroding polymer, J. Control. Release, 2, 167–177 (1985).CrossRefGoogle Scholar
  13. 13.
    A. Gopferich and R. Langer, The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides, J. Polym. Sci, 31, 2445–2458 (1993).Google Scholar
  14. 14.
    E. Mathiowitz, J. Jacob, K. Pekarek, and D. Chickering III, Morphological characterization of bioerodible polymers 3. Characterization of the erosion and intact zones in polyanhydrides using scanning electron microscopy. Macromolecules, 26, 6756–6765 (1993).CrossRefGoogle Scholar
  15. 15.
    K.J. Pekarek, J.S. Jacob, and E. Mathiowitz, Double-walled polymer microscopheres for controlled drug release, Nature, 367, 258–260 (1993).CrossRefGoogle Scholar
  16. 16.
    A. J. Domb, S. Amselem, and M. Maniar., in Polymeric Biomaterials, S. Dumitriu, ed., Marcel Dekker, Inc., New York, 10016, chap. 13 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. M. Shakesheff
    • 1
  • M. C. Davies
    • 1
  • A. Domb
    • 2
  • C. J. Roberts
    • 1
  • A. J. Shard
    • 1
  • S. J. B. Tendler
    • 1
  • P. M. Williams
    • 1
  1. 1.Laboratory of Biophysics and Surface Analysis Department of Pharmaceutical SciencesThe University of Nottingham, University Park NottinghamUK
  2. 2.School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations