Keynote Address

Scanned Probe Microscopy
  • Michael F. Crommie


Over the last decade rapid growth has occurred in the variety of scanned probe techniques available.1 The vast array of familiar reciprocal space probes is now joined by a multitude of real space probes. The relatively new ability to observe real space properties of systems at microscopic-length scales has found wide applicability across the physical sciences, from physics and chemistry to biology, with no end in sight. Much of this advancement has been made possible by the ready availability of commercial instruments operating in air, liquid, and vacuum. One can now even purchase high performance combined STM/AFM devices, tailored to a particular application. Despite this rapid advancement, however, there still exists a feeling that the fields of scanned probe microscopy are in their infancy, perhaps with the best yet to come. New techniques continue to be developed, and a new philosophy of experimentation has begun to take shape. Rather than just use scanned probe instruments as passive tools of surface characterization, researchers are increasingly using them to intentionally modify the systems under study. This change brings with it a great many new possibilities.


Scanning Tunneling Microscopy Real Space Scan Probe Microscopy Scan Force Microscopy Diffusion Limited Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Wiesendanger and N.J. Guntherodt, eds., “Scanning Tunneling Microscopy,” Springer-Verlag, New York (1993).Google Scholar
  2. 2.
    G. Binnig, H. Rohrer, C. Gerber and E. Weibel_ 7x7 Reconstruction on Si(1 l I) resolved in real space, Phys. Rev. Lett. 50: 120–123 (1983).CrossRefGoogle Scholar
  3. 3.
    R. M. Feenstra, J. A. Stroscio, J. Tersoff and A. P. Fein, Atom-selective imaging of the GaAs(110) surface, Phys. Rev. Lett. 58: 1192–1195 (1987).CrossRefGoogle Scholar
  4. 4.
    R.M. Tromp, R.J. Hamers and J.E. Demuth, Si(001) dimer structure observed with scanning tunneling microscopy, Phys. Rev. Lett. 55: 1303–1306 (1985).CrossRefGoogle Scholar
  5. 5.
    J.A. Stroscio and W. J. Kaiser, eds., “Scanning Tunneling Microscopy,” Academic Press, Inc., San Diego (1993).Google Scholar
  6. 6.
    M.B. Johnson, P.M. Koenraad, W.C. v. d. Vleuten, H.W.M. Salemink and.CN.Wolter, Be delta-doped layers in GaAs imaged with atomic resolution using scanning tunneling microscopy, Phys. Rev. Lett. 75: 1606 (1995).CrossRefGoogle Scholar
  7. 7.
    C. Woll, S. Chiang, R. J. Wilson and P.H. Lippel, Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy, Phys. Rev. B 39: 7988–7991 (1988).CrossRefGoogle Scholar
  8. 8.
    M. F. Crommie, C. P. Lutz and D. M. Eigler, Imaging standing waves in a two-dimensional electron gas, Nature 363: 524–527 (1993).CrossRefGoogle Scholar
  9. 9.
    D. D. Chambliss and R. J. Wilson, Relaxed diffusion limited aggregation of Ag on Au(11 l) observed by scanning tunneling microscopy, J. Vac. Sci. B 9: 2 928–932 (1991).CrossRefGoogle Scholar
  10. l0. D. Kandel and E. Kaxiras, Surfactant mediated crystal growth of semiconductiors, Phys. Rev. Lett. 75: 2742 (1995).CrossRefGoogle Scholar
  11. 11.
    J. A. Meyer, J. Vrijmoeth and R.J. Behm, Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51: 14790 (1995).CrossRefGoogle Scholar
  12. 12.
    H. Brune, H. Roder and K. Kern, Kinetic processes in metal epitaxy studied with variable temperature STM: AG/Pt (111), Thin solid films 264: 230 (1995).CrossRefGoogle Scholar
  13. 13.
    E.A. Eklund, E.J. Snyder and R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphiste surfaces using the scanning tunneling microscope, Surface Science 285: 157 (1993).CrossRefGoogle Scholar
  14. 14.
    R.V. Coleman, Z. Dai and W.W. Mcnairy, Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy, Applied Surface Science 60, 485 (1992).Google Scholar
  15. 15.
    R. E. Thomson, B. Burk and A. Zettl, Scanning tunneling microscopy of the charge-density-wave structure in IT-TaS2, Phys. Rev. B 49, 16899–16916 (1994).CrossRefGoogle Scholar
  16. 16.
    H. F. Hess, R. B. Robinson, R. C. Dynes, J. J. M. Valles and J. V. Waszczak, Scanning-tunnelingmicroscope obervation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Phys. Rev. Lett. 62, 214 (1989).CrossRefGoogle Scholar
  17. 17.
    Maggio-Aprile, C. Renner, A. Erb, E. Walker and O. Fischer, Direct vortex lattice imaging and tunneling spectroscopy, Phys. Rev. Lett. 75: 2754–2757 (1995).CrossRefGoogle Scholar
  18. 18.
    G.J. Germann, S.R. Cohen and G. Neubauer, Atomic scale friction of a diamon tip on diamond (100) and (111) surfaces,.L Appl. Phys. 73: 163–167 (1993).CrossRefGoogle Scholar
  19. 19.
    M.D. Peny and I A. Ilarrison, lJniversal aspects of the atomic scale friction of diamond surfaces, J. Phys. Chem. 99: 960–65 (1995).Google Scholar
  20. 20.
    D. Sarid, `Scanning Force Microscopy“ Oxford University Press, New York (1991). 21 P. K. I Iansma, V. 13. Flings, O. Marti and C. E. Bracker, Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology, Science 242: 209–216 (1988).Google Scholar
  21. 22.
    J. H. Hoh and P. K. Hansma, Atomic force microscopy for high resolution imaging in cell biology, Trends in Cell Biology 2: 208–213 (1992).CrossRefGoogle Scholar
  22. 23.
    D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344: 524–526 (1990).CrossRefGoogle Scholar
  23. 24.
    P. Avouris, ed., “Atomic and Nanometer-Seale Modification of Materials: Fundamentals and Applications” Kluwer Academic Publishers, Boston (1993).Google Scholar
  24. 25.
    P.H. Beton, A. Dunn and P. Moriarty, Manipulation of C50 molecules on a Si surface, Appl. l’hys. Lett. (in press).Google Scholar
  25. 26.
    M.F. Crommie, C. P. Lutz and D. M. Eigter, Confinement of electrons to quantum corrals on a metal surface, Science 262: 218–220 (1993).CrossRefGoogle Scholar
  26. 27.
    E.J. Heller, M.I. Crommie, C.Y. Lutz and D.M. Eigler, Scattering and adsorption of surface electron P. Avouris waves in quantum corrals, Nature 369: 464–466 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michael F. Crommie
    • 1
  1. 1.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations