Advertisement

Imaging Matrix Materials and Fundamental Lamellae Structure of Biogenic Aragonite

  • R. W. Gauldie
  • G. Raina
  • S. K. Sharma
  • I. F. West

Abstract

Atomic force microscopy (AFM) has been used to image lamellae at the nanometer level of resolution in broken sections of otoliths of snapper (Pagrus major), hake (Macruronus novaezelandiae) and salmon (Oncorhynchus tshawytscha) as well as in abiogenic aragonite. In abiogenic aragonite the mean lamellae width is found to be 30 nm. Comparison of the values of lamellae widths obtained from the published literature showed no significant difference between the lamellae widths measured from atomic force and transmission electron microscopy of otoliths of hake (Macruronus novaezelandiae). There are, however, statistically significant differences in lamellae widths between species, that is, the mean lamellae width is in the order of snapper (80 nm) < hake (90 nm) < salmon (130 nm).

Keywords

Atomic Force Microscope Juvenile Salmon Oncorhynchus Tshawytscha Fish Otolith Transmission Electron Microscopy Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dale, The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidac), Norw. J. Zool. 24: 85–125 (1976).Google Scholar
  2. 2.
    E.T. Degens, W.B. Deuser, and R.L. Haedrich, Molecular structure and composition of fish otoliths, Mar. Biol. 2: 105–113 (1969).CrossRefGoogle Scholar
  3. 3.
    R.R. FAY, The goldfish ear codes the axis of acoustic particle motion in three dimensions, Science 225: 951–953 (1980).CrossRefGoogle Scholar
  4. 4.
    Y. Mugiya, and T. Uchimure, Otolith resorption induced by anaerobic stress in the goldfish, Carassius auratus, J. Fish. Biol. 35: 813–818 (1989).CrossRefGoogle Scholar
  5. 5.
    D. Nolf, “Handbook of Paleoichthyology,” vol. 10, Otolithi piscium, Gustav Fisher Verlag, Stuttgart, New York (1985).Google Scholar
  6. 6.
    P.A.M. Gaemers, Taxonomic position of the cichlidae (Pices, Perciformes) as demonstrated by the morphology of their otoliths, Neth. J. Zool. 34: 566–595 (1984).CrossRefGoogle Scholar
  7. 7.
    D.G. Dunkelberger, J.M. Dean, and N. Watabe, The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus hetevoclitus, J. Morphol. 163: 367–377 (1980).CrossRefGoogle Scholar
  8. 8.
    R.W. Gauldie, Phase differences between check ring locations in the orange roughly otolith Hoplostethus atlanticus), Can. J. Fish. Aquat. Sci. 47: 760–765 (1990a).CrossRefGoogle Scholar
  9. 9.
    R.W. Gauldie, The morphology and periodic structures of the otolith of the chinook salmon (Oncorhynchus tshawytscha) and temperature dependant variation in microscopic growth increment width, Acta. Zool., Stockh. 72: 159–179 (1991).CrossRefGoogle Scholar
  10. 10.
    R. Lecomte-Finiger, The crystalline ultrastructure of otoliths of the eel (A: anguilla L. 1758), J. Fish. Biol. 40: 181–190 (1992).CrossRefGoogle Scholar
  11. 11.
    N.M. Davies, R.W. Gauldie, S.A. Crane, and R.K. Thompson, Otolith ultrastructure of smooth orco Psuedocyttus maculatus and black oreo, Allocyttus sp., species, Fish. Bull. U.S. 86: 499–515 (1988).Google Scholar
  12. 12.
    T.B. Bagenal, Aging of fish, in: “Proceedings of an International Symposium,” Unwin Brothers l,td., Gresham Press, Old Woking, Surrey, England (1974).Google Scholar
  13. 13.
    D.A. Carlstrom, A crystallographic study of vertebrate otoliths, Biol. Bull., Woods Hole 125: 441463 (1963).Google Scholar
  14. 14.
    M.B. Strong, J.D. Neilson, J.J. Hunt, Aberrant crystallization of pollack (Pollachius virens) otoliths, Can. J. Fish. Aquat. Sci. 43: 1457–1463 (1986).CrossRefGoogle Scholar
  15. 15.
    K.P. Mulligan, and R.W. Gauldie, The biological significance of the variation in crystalline morph and habit of otoconia in elasmobranchs, Copeia 1989: 856–871 (1989).CrossRefGoogle Scholar
  16. 16.
    R.W. GAULDIE, Vaterite otoliths from the opah, Lampris immaculatus, and two species of sunfish, Mola mola and M. ramsayi, Acta Zool., Stockh. 71: 193–199 (1990b).CrossRefGoogle Scholar
  17. 17.
    R.W. Gauldie, and D.G.A. Nelson, Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths, Comp. Biochem. Physiol. 90: 510–509 (1988).CrossRefGoogle Scholar
  18. 18.
    M.E. Marsh, and R.L. Sass, Aragonite twinning in the molluscan bivalve hinge ligament, Science 208: 1262–1263 (1980).CrossRefGoogle Scholar
  19. 19.
    R.W. Gauldie, The fine structure of check rings in the otolith of the New Zealand snapper Chrysophrys auratus), N.Z. J. Mar. Freshw. Res. 22: 273–278 (1988).CrossRefGoogle Scholar
  20. 20.
    R.W. Gauldie, D.G.A. Nelson. Otolith growth in fishes, Comp. Biochem. Physiol. 97: 119135 (1990).Google Scholar
  21. 21.
    R.W. Gauldie, G.C. Coote, K.P. Mulligan and I.F. West, A chemical probe of the microstructure organization of fish otoliths, Comp. Biochem. Physiol. 102: 533–545 (1992).CrossRefGoogle Scholar
  22. 22.
    R.W. Gauldie, Continuous and discontinuous growth in the otolith of Macruronus novaezelandiae (Merlucciidae: Teleostei) J. Morph. 216: 1–24 (1993).CrossRefGoogle Scholar
  23. 23.
    P.E. Hillner, A.J. Gratz, S. Manne, and P.K. Hansma, Atomic-scale imaging of calcite growthd dissolution in real time, Geology 20: 359–362 (1992).CrossRefGoogle Scholar
  24. 24.
    G. Friedbacher, P.K. Hansma, E. Ramli, and G.D. Stucky, Imaging powders with the Atomic force Microscope: from biominerals to commercial materials, Science 253: 1261–1263 (1991).CrossRefGoogle Scholar
  25. 25.
    A.L. Rachlin, G.S. Henderson, and M.C. Goh. An atomic force microscopy (AFM) study of the calcite cleavage plane: image averaging in Fourier space, Am. Mineral. 77: 904–910 (1992).Google Scholar
  26. 26.
    P.W. Grutter, Zimmerman-Edling and D. Brodbeck, Tip artifacts of microfabricated force sensors for atomic microscopy, Appl. Phys. Lett. 60: 2741–2743 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Hollandev and D.A. Wolfe, Nonparametric statisical methods, John Wiley and Sons, New York (1973).Google Scholar
  28. 28.
    P. Sprent, “Applied Nonparametric Statistical Methods,” Chapman and Hall, London (1989).Google Scholar
  29. 29.
    T.J. Terpstra, The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Indag. Math. 14: 327–333 (1952).Google Scholar
  30. 30.
    A.R. Jonckheere, A distribution-free k-sample test against ordered alternatives, Biometrika 41: 133145 (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. W. Gauldie
    • 1
  • G. Raina
    • 1
  • S. K. Sharma
    • 1
  • I. F. West
    • 1
  1. 1.Hawaii Institute of Geophysics School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations