Scanning Tunneling Microscopy Imaging of Biomolecules: I. Tubulin in Microtubules and Monolayers II. Bacterial Luciferase—A Model System for Anesthesia

  • Stuart R. Hameroff
  • Djuro Koruga
  • J. Simic-Krstic
  • M. Trifunovic
  • M. Voelker


We used scanning tunneling microscopy (STM) to image two types of biomolecules using both graphite and gold substrates: 1) tubulin — the component protein of cytoskeletal microtubules — in two different forms: cylindrical microtubules and in zinc-induced tubulin monolayer sheets. In both cases STM images show periodic structures whose dimensions correlate with tubulin monomers and dimers. The shapes of the dimers differ in the two cases, apparently because of different surface charge distributions. 2) bacterial luciferase, a photoemitting enzyme whose function is inhibited by general anesthetic gases proportional to their anesthetic potency. We imaged bacterial luciferase in its “activated” form (in the presence of NADH) and in ethanol, which acts as an anesthetic.


Scanning Tunneling Microscopy Highly Orient Pyrolytic Graphite Gold Substrate Tubulin Dimer Longitudinal Striation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Adey, B. Wardley-Smith, D. White, Mechanism of inhibition of bacterial luciferase by anaesthetic, Life Sci., 17: 1849–1854 (1975).CrossRefGoogle Scholar
  2. 2.
    L.A. Amos, A. Klug, Arrangement of subunits in flagellar microtubules, J. Cell Sci., 14: 523–550 (1974).Google Scholar
  3. 3.
    M. Amrein, R. Durr, A. Stasiak, H. Gross, G. Travaglini, Scanning tunneling microscopy of uncoated rec-DNA complexes, Science, 243: 1709–1710 (1989).CrossRefGoogle Scholar
  4. 4.
    A.M. Baro, R. Miranda, J. Alaman; N. Garcia, G. Binning, H. Rohrer, C. Berger, J.L. Carraseosa, Determination of surface topography of biological specimens at high resolution by scanning tunneling microscopy, Nature, 315: 253–255 (1985).CrossRefGoogle Scholar
  5. 5.
    T.P. Beebe, T.E. Wilson, F. Ogletree, J.E. Katz, R. Balhorn, M.B. Salmeron, W.J. Siekhaus, Direct observation of native DNA structures with the scanning tunneling microscope, Science, 243: 370–372 (1989).CrossRefGoogle Scholar
  6. 6.
    B.L. Blackford, M.H. Jericho, P.J. Mulhem, A review of scanning tunneling microscope atomic force microscope imaging of large biological structures: problems and prospects, Scanning Microscopy, 5: 970–918 (1991).Google Scholar
  7. 7.
    C.R. Clemmer, T.P. Beebe, Jr., Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies, Science, 251: 640–642 (1991).CrossRefGoogle Scholar
  8. 8.
    S. Curry, W.R. Lieb, N.P. Franks, Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity, Biochem., 29: 4641–4652 (1990).CrossRefGoogle Scholar
  9. 9.
    D.C. Dahn, M.O. Watanabe, B.L. Blackford, M.H. Jericho, T.J. Beveridge. Scanning tunneling microscopy imaging of biological structures, J. Vac. Sci. Technol. A., 6: 548–552 (1988).CrossRefGoogle Scholar
  10. 10.
    B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma, Imaging crystals, polymers, and processes in water with the atomic force microscope, Science, 243: 1586–1589 (1989).CrossRefGoogle Scholar
  11. 11.
    P. Dustin, “Microtubules,” Springer-Verlag, Berlin (1984).Google Scholar
  12. 12.
    N.P. Franks, W.R. Lieb, Do general anaesthetics act by competitive binding to specific receptors? Nature, 310: 599–601 (1984).CrossRefGoogle Scholar
  13. 13.
    N.P. Franks, W.R. Lieb, Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects, Nature, 316: 349–351 (1985).CrossRefGoogle Scholar
  14. 14.
    N.P. Franks W.R. Lieb, Molecular mechanisms of general anaesthesia, Nature, 300: 487–493 (1982).CrossRefGoogle Scholar
  15. 15.
    S. Hameroff, Y. Simic-Krstic, L. Vemetti, Y.C. Lee, S. Dror. J. Weidmann, V. Elings, K. Kjoller, R. McCuskey, Scanning tunneling microscopy of cytoskeletal proteins: microtubules and intermediate filaments, J. Vac. Sci. Technol., A8: 687–691 (1990).Google Scholar
  16. 16.
    S. R. Hameroff, R.C. Watt, Do anesthetics act by altering electron mobility? Anesth. Analg., 62: 936–940 (1983).CrossRefGoogle Scholar
  17. 17.
    P.K. Hansma, V.B. Elings, O. Marti, C.E. Bracker, Scanning tunneling microscopy and atomic force microscopy: application to biology and technology, Science, 242: 209–216 (1988).CrossRefGoogle Scholar
  18. 18.
    P. K. liansma, J. Tersoff, Scanning tunneling microscopy, J. Appl. Phys., 61: R1 - R23 (1987).CrossRefGoogle Scholar
  19. 19.
    J.K.H. Horber, C.A. Lang, T.W. Hansch, W.M. Heckl, H. Mohwald. Scanning tunneling microscopy of lipid films and embedded biomolecules, Chem. Phys. Lett. 145: 151–158 (1988).CrossRefGoogle Scholar
  20. 20.
    D. Koruga, Neuromolecular computing, Nanobiology, 1(1): 1–21 (1992).Google Scholar
  21. 21.
    D. Koruga, S. Hameroff, R. Loutfy, M. Sundareshan, “Fullerene C60 - From Nanobiology to Nanotechnology,” Elsevier, Amsterdam (1993).Google Scholar
  22. 22.
    H. Larsson, M. Wallin, A. Edstrom, Induction of a sheet polymer of tubulin by Zn”, Exp. Cell Res., 100: 104–108 (1976).CrossRefGoogle Scholar
  23. 23.
    S.M. Lindsay, B. Barris, Imaging deoxyribose nucleic acid molecules on a metal surface under water by scanning tunneling microscopy, J. Vac. Sci. Technol. A6: 544–547 (1988).CrossRefGoogle Scholar
  24. 24.
    S.M. Lindsay, O.F. Sankey, Y. Li, C. Herbst, A. Rupprecht, Pressure and resonance effects in scanning tunneling microscopy of molecular adsorbates, J. Phys.Chem., 94: 4655–4659 (1990).CrossRefGoogle Scholar
  25. 25.
    E. Mandelkow, E.M. Mandelkow, Image reconstruction of tubulin hoops, J. Ultrastruct. Res., 74: 11–33 (1981).CrossRefGoogle Scholar
  26. 26.
    E. Mandelkow, J. Thomas, C. Cohen, Microtubule structure at low resolution by x-ray diffraction, Proc. Natl. Acad. Sci. USA, 79: 3370–3374 (1977).CrossRefGoogle Scholar
  27. 27.
    O. Marti, H.O. Ribi, B. Drake, T.R. Albrecht, C.F. Quate, P.K. Hansma, Atomic force microscopy of an organic monolayer, Science, 239: 50–52 (1988).CrossRefGoogle Scholar
  28. 28.
    A.J. Middleton, E.B. Smith, General anaesthetics and bacterial luminescence. II. The effect of diethyl ether on the in vitro light emission of Vibrio fischeri, Proc. R. Soc. Lond. B. 193: 173–190 (1976).CrossRefGoogle Scholar
  29. 29.
    Y. Simic-Krstic, M. Kelley, C. Schneiker, M. Krasovich, R. McCuskey, D. Koruga, S. Hameroff, Direct observation of microtubules with the scanning tunneling microscope, FASEB J., 3: 2184–2189 (1989).Google Scholar
  30. 30.
    M.L. Shelanski, F. Gaskin, C.R. Kantor, Microtubule assembly in the absence of added nucleotides, Proc. Natl. Acad. Sci. USA, 70: 765–769 (1973).CrossRefGoogle Scholar
  31. 31.
    L.K. Tamm, R.H. Crepeau, S.J. Edelstein, Three-dimensional reconstruction of tubulin in zinc-induced sheets, J. Mol. Biol., 130: 473–492 (1979).CrossRefGoogle Scholar
  32. 32.
    G. Travaglini, H. Rohrer, M. Amrein, H. Gross, Scanning tunneling microscopy on biological matter, Surface Sci., 181: 380–390 (1987).CrossRefGoogle Scholar
  33. 33.
    L.A. Vemetti, C.L.A. Nowlin, S.R. Hameroff, A.J. Gandolfi, Y.C. Lee, D. Sarid D, STM resolution of surface features on cytokeratin protein is enhanced by prolonged exposure of protein to cold temperatures, J. Vac. Sci. Technol. B9: 1223–1226 (1991).CrossRefGoogle Scholar
  34. 34.
    M.A. Voelker, S.R. Hameroff, J.D. He, E.L. Dereniak, R.S. McCuskey, C.W. Schneiker, T.A. Chvapil, L.S. Bell, L.B. Weiss, STM imaging of molecular collagen and phospholipid membranes, J. Micros. 152: 557–566 (1988).CrossRefGoogle Scholar
  35. 35.
    H. J. Woodland, C.J. Potrikus, S.C. Gupta, M. Kurfurst, J.C. Makemson, Biochemistry and physiology of bioluminescent bacteria, Adv. Microb. Physiol., 26: 235–289 (1985).CrossRefGoogle Scholar
  36. 36.
    D.C. White, B. Wardley-Smith, G. Adey, The site of action of anaesthetics on bacterial luminescence, Life Sci., 12 (II): 453–461 (1973).CrossRefGoogle Scholar
  37. 37.
    J.A.N. Zasadzinski, J. Schneir, J. Gurley, V.B. Elings, P.K. Hansma, Scanning tunneling microscopy of freeze fracture replicas of biomembranes, Science, 239: 1013–1015 (1988).CrossRefGoogle Scholar
  38. 38.
    M.M. Ziegler, T.O. Baldwin, Biochemistry of bacterial bioluminescence, Curr. Top. Bioenerget., 12: 65–113 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Stuart R. Hameroff
    • 1
  • Djuro Koruga
    • 2
  • J. Simic-Krstic
    • 2
  • M. Trifunovic
    • 2
  • M. Voelker
    • 3
  1. 1.Advanced Biotechnology Laboratory, Department of AnesthesiologyUniversity of Arizona Health Sciences CenterTucsonUSA
  2. 2.Molecular Machines Research CenterUniversity of BelgradeBelgradeYugoslavia
  3. 3.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations