Advertisement

Surface Science at the Nanoscale: Molecular Imaging and Surface Forces

  • Richard J. Colton
  • Eric I. Altman
  • Steven M. Hues

Abstract

This paper presents a general description of the use of the ne tip-based proximal probes—scanning tunneling microscopy (STM) and atomic force microscopy (AFM)—to study the nanoscale properties of surfaces. Using STM, we have examined the nucleation and growth of C60 films on Au(111) and Ag(111). In addition to imaging, we have measured the charge transfer between the metal and C60 using STM in the spectroscopic mode. AFM studies which focus on developing quantitative methods for measuring surface forces and the mechanical properties of surfaces are also presented.

Keywords

Scan Tunneling Microscopy Surface Force Force Curve Scan Tunneling Microscopy Image Nanomechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques and Applications 1993,“ D.A. Bonnell, ed. VCH Publishers, Inc., New York, NY.Google Scholar
  2. 2.
    Methods of Experimental Physics, Scanning Tunneling Microscopy,“ J.A. Stroscio and J.W. Kaiser, eds., vol. 27, Academic Press, Inc., Boston, MA (1993).Google Scholar
  3. 3.
    E.I. Altman and R.J. Colton, Nucleation, growth and structure of fullerene films on Au(111), Surf. Sci. 279, 49–67 (1992).CrossRefGoogle Scholar
  4. 4.
    E.I. Altman and R.J. Colton, Characterization of the interaction of C, with Au(111), in “Atomic and Nanometer Scale Modification of Materials: Fundamentals and Applications,” Ph. Avouris, ed., NATO ASI Series, Kluwer Academic Press, London 303–314 (1993).Google Scholar
  5. 5.
    E.I. Altman and R.J. Colton, The interaction of C, with noble metal surfaces, Surf. Sci., 295: 1333 (1993).CrossRefGoogle Scholar
  6. 6.
    E.I. Altman, and R.J. Colton, Determination of the orientation of C, adsorbed on Au(111) and Ag(111), Phys. Rev. B48: 18244–9 (1993).CrossRefGoogle Scholar
  7. 7.
    G. Binnig, C.F. Quate, and Ch. Gerber, Atomic force microscope, Phys. Rev. Lett. 56: 930 (1986).CrossRefGoogle Scholar
  8. 8.
    C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59: 1942 (1987).CrossRefGoogle Scholar
  9. 9.
    N.A. Burnham and R.J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, J. Vac. Sci. Technol. A7: 2906–13 (1989).CrossRefGoogle Scholar
  10. 10.
    N.A.Burnham, D.D Dominguez, R.L Mowery, and R.J. Colton, Probing the surface forces of monolayer films with an atomic force microscope, Phys. Rev. Lett. 64: 1931–4 (1990).CrossRefGoogle Scholar
  11. 11.
    N.A. Burnham, R.J. Colton, and H.M Pollock, Interpretation issues in force microscopy, J. Vac.Sci. Technol. A9: 2548–56 (1991).Google Scholar
  12. 12.
    N.A. Burnham, R.J. Colton, and H.M. Pollock,“ Interpretation of Force Curves in Force Microscopy, Nanotechnology,” vol. 4, 64–80 (1993)CrossRefGoogle Scholar
  13. 13.
    N.A. Burnham and R.J. Colton, Force microscopy, in “Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques and Applications,” D.A. Bonnell, ed., VCH Publishers, Inc., New York, NY, 191–250 (1993).Google Scholar
  14. 14.
    N.A. Burnham, R.J. Colton, and H.M. Pollock, “Work Function Anisotropies as an Origin of Long-Range Surface Forces,” Phys. Rev. Lett. 69: 144–47 (1992).CrossRefGoogle Scholar
  15. 15.
    S.M. Hues, R.J. Colton, E. Meyer, and H-J Giintherodt, Scanning probe microscopy of thin films, MRS Bulletin, 18: 41–49 (1993).Google Scholar
  16. 16.
    J.N. Israelachvili, “Intermolecular and Surface Forces,” Academic Press, Inc., New York, NY, 153 (1986).Google Scholar
  17. 17.
    U. Landman, W.D. Luedtke, N.A. Burnham, and R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture, Science 248: 454–61 (1990).Google Scholar
  18. 18.
    J.A. Harrison, D.W. Brenner, C.T. White, and R.J. Colton, Atomistic Mechanisms of Adhesion and Compression of Diamond Surfaces, Thin Solid Films 206: 213–19 (1991).CrossRefGoogle Scholar
  19. 19.
    J.A. Harrison, R.J. Colton, C.T. White, and D.W. Brenner, Atomistic simulation of the Nanoindentation of diamond and graphite surfaces, Mat. Res. Soc. Symp. Proc. 239: 573–7 (1992).CrossRefGoogle Scholar
  20. 20.
    J.A. Harrison, C.T. White, R.J. Colton, and D.W. Brenner, Nanoscale investigation of indentation, adhesion, and fracture of diamond (111) surfaces, Surf Sci. 271: 57–67 (1992).CrossRefGoogle Scholar
  21. 21.
    J.A. Harrison, C.T. White, R.J. Colton, and D.W. Brenner, Molecular dynamics simulations of atomic-scale friction of diamond surfaces, Phys. Rev. B 46: 9700–8 (1992).Google Scholar
  22. 22.
    J.A. Harrison, C.T. White, R.J. Colton, and D.W. Brenner, Atomistic simulations of friction at sliding diamond interfaces, MRS Bulletin 18: 50–3 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard J. Colton
    • 1
  • Eric I. Altman
    • 2
  • Steven M. Hues
    • 1
  1. 1.Chemistry Division, Code 6177Naval Research LaboratoryUSA
  2. 2.Chemical Engineering DepartmentYale UniversityNew HavenUSA

Personalised recommendations