Scanning Probe Microscopy Imaging and Characterization of Biological Structures from Biomolecules to Living Cells

  • Vincent B. Pizziconi
  • Darren L. Page
  • Catherine T. Connolly
  • Pamela A. Diamond

Abstract

Much progress has been made on the imaging and characterization of biological structures using scanning probe microscopy (SPM) since the first images were reported on DNA almost a decade ago. SPM has now demonstrated its utility in imaging a diverse group of biological structures ranging from biomolecular and macromolecular structures to supramolecular structures and even living biological cells. It is now apparent that SPM has the potential to yield unique insight into biological structure and function. However, more work is needed to better understand probe-sample interactions, better define sample preparatory and SPM operational conditions, and develop independent image interpretation methods before the full potential of SPM imaging of biomolecular structures can be realized. Progress made in these areas will also help delineate the specific utility of the SPM methods (STM and AFM) for imaging biologicals. This is particularly true for larger biological structures, such as cells, which pose unique challenges and opportunities for SPM. This paper reviews the progress made to date on the SPM imaging and characterization of biomolecular structures from macromolecules to living cells and their self-assemblies.

Keywords

Graphite Tungsten Immobilization Polypeptide Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Snyder and I-1.S.Whitc, Scanning tunneling microscopy, atomic force microscopy, and related techniques, Anal.Chem., 64 (12): 116R - 133R (1992).CrossRefGoogle Scholar
  2. 2.
    J.A. Golovchenko, The tunneling microscope: a new look at the atomic world, Science, 232: 48–53 (1986).CrossRefGoogle Scholar
  3. 3.
    M.E. Welland and M.E. Taylor, Scanning Tunneling Microscopy, in: “Modern Microscopies: Techniques and Applications,” Duke, P.J., and Michette, A.G., eds., Plenum Press, New York N.Y. (1990).Google Scholar
  4. 4.
    R.J. Behm, N. Garcia, H. Rohrer, “Scanning Tunneling Microscopy and Related Methods” Academic Publishers, Dordrecht, The Netherlands (1990).Google Scholar
  5. 5.
    C.J. Chen, “Introduction to Scanning Tunneling Microscopy,” Oxford University Press, Oxford (1993).Google Scholar
  6. 6.
    D.A. Bonne11, “Scanning Tunnelling Microscopy and Spectroscopy,” VCH Publishers, Inc., New York (1993).Google Scholar
  7. 7.
    O. Marti and M. Amrein, “STM and SFM in Biology,” Acad. Press, Inc., San Diego (1993).Google Scholar
  8. 8.
    D. Sarid, “Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces” Oxford University Press, New York, NY (1991).Google Scholar
  9. 9.
    V.B. Pizziconi and D.L. Page, Elucidation of macromolecular assemblies: use of scanning tunneling microscopy for molecular bioengineering of cellular self-assemblies in molecular device design, in: Macromolecular assemblies in polymeric systems, Stroeve, P., Balazs, A.C., eds., ACS Symposum Series 493: 256–277 (1992).CrossRefGoogle Scholar
  10. 10.
    V.B.Pizziconi and D.L.Page, Image and characterization of macromolecular interface structures for whole cell biosensors”, in: Synthetic Microstructures in Biological Research, Schnur, J. and Peckerar, M., eds., Plenum Press, New York, NY (1992).Google Scholar
  11. 11.
    G.H. Binnig, H. Rohrer., Ch.Gerber, E.Wiebel., Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49: 57–61 (1982).CrossRefGoogle Scholar
  12. 12.
    G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface Sci. 126: 236–244 (1983).CrossRefGoogle Scholar
  13. 13.
    J. Mou, W. Sun, J. Yan, W.S. Yang, C. Liu, Z. Zhai, Q. Xu, and Y. Xie, Underwater scanning tunneling microscopy of organic and biological molecules, J. Vac. Sci. Technol. B 9 (3): 1566–1569, (1991).CrossRefGoogle Scholar
  14. 14.
    L. Feng, J.D. Andrade, and C.Z. Hu, Scanning tunneling microscopy of proteins on graphite surfaces, Scanning Microscopy 3 (2): 399–410 (1989).Google Scholar
  15. 15.
    L. Siperko and W. Landis, Atomic scale imaging of hydroxyapatite and brushite in air by force microscopy, Appl. Phys. Lett. 61 (21): 2610–2612 (1992).CrossRefGoogle Scholar
  16. 16.
    V.J. Morris, T.J. McMaster, A.P. Gunning, J. Mingins, A.S. Tatham, and E. Mitchell, Scanning tunneling microscopy of biological macromolecules, Polymer Preprints, 33 (1): 737–738 (1992).Google Scholar
  17. 17.
    M.J. Miles, T. McMaster, H.J. Carr, A.S. Tatham, P.R. Shewry, J.M. Field, P.S. Belton, D. Jeenes, B. Hanley, M. Whittam, P. Cairns, V.J. Morris, and N. Lambert, Scanning tunneling microscopy of biomolecules, J. Vac. Sci. Technol. A8 (1): 698–702 (1990).CrossRefGoogle Scholar
  18. 18.
    T.J. McMaster, H. Carr, M.J. Miles. P. Cairns, and V.J. Morris, Polypeptide structures imaged by the scanning tunneling microscope, J. Vac. Sci. Tech., A8 (1): 648–651 (1990).CrossRefGoogle Scholar
  19. 19.
    H. Snellman, L.J. Pelliniemi, R. Penttinen, R. Laiho, Application of scanning tunneling microscopy for imaging of CNBr-peptides of type I collagen, J. Vac. Sci. Technol. A 8 (1): 692–694 (1990).CrossRefGoogle Scholar
  20. 20.
    R. Coratger, A. Chahboun, F. Ajustron, J. Beauvillian, M. Erard, and F. Amalric, Scanning tunneling microscopy of a liquid crystalline phase of poly((dA-dT)_(dA-dT)) induced by a histone H1 peptide, Ultramicroscopy 34: 141–147 (1990).CrossRefGoogle Scholar
  21. 21.
    P.G. Arscott and V.A. Bloomfield, Scanning tunneling microscopy of nucleic acids and polynucleotides, Ultramicroscopy 33: 127–131 (1990).CrossRefGoogle Scholar
  22. 22.
    M.G. Youngquist, R.J. Driscoll, T.R. Coley, W.A. Goddard, and J.D. Baldeschweiler, Scanning tunneling microscopy of DNA: Atom-resolved imaging, general observations and possible contrast mechanism, J. Vac. Sci. Technol. B 9 (2): 1304–1309 (1991).CrossRefGoogle Scholar
  23. 23.
    G. DeStasio, D. Rioux, G. Margaritondo, D. Mercanti, L. Trasatti, and C. Moore, Scanning tunneling microscopy of deoxyribonucleic acid during replication, J. Vac. Sci. Technol. A 9 (4): 2319–2321 (1991).CrossRefGoogle Scholar
  24. 24.
    J.A. DeRose, S.M. Lindsay, L.A. Nagahara, P.I. Oden, T. Thundat, and R.L. Rill, Electrochemical deposition of nucleic acid polymers for scanning probe microscopy, J. Vac. Sci. Technol. B 9 (2): 1166–1170 (1991).CrossRefGoogle Scholar
  25. 25.
    C. Bustamante and D. Dunlap, Application of scanning tunneling microscopy to structural biology, Seminars in Cell Biology 2: 179–185 (1990).Google Scholar
  26. 26.
    M. Salmeron, T. Beebe, J. Odriozola, T. Wilson, D.F. Ogletree, and W. Siekhaus, Imaging of biomolecules with the scanning tunneling microscope: Problems and prospects, J. Vac. Sci. Technol.. A 8 (1): 635–641 (1990).CrossRefGoogle Scholar
  27. 27.
    L.A. Nagahara, T. Thundat, P.I. Oden, S.M. Lindsay, and R.L. Rill, Electrochemical deposition of molecular adsorbates for in situ scanning probe microscopy, Ultramicroscopy 33: 107–116 (1990).CrossRefGoogle Scholar
  28. 28.
    L.A. Bottomley, J.N. Haseltine, D.P. Allison, R.J. Warmack, T. Thundat, R.A. Sachleben, G.M. Brown, R.P. Woychik, K. Bruce Jacobson, and T.L. Ferrell, Scanning tunneling microscopy of DNA: The chemical modification of gold surfaces for immobilization of DNA, J. Vac.Sci.Technol. A 10 (4): 591–595 (1992).CrossRefGoogle Scholar
  29. 29.
    T. Thundat, L.A. Nagahara, P. Oden, and S.M. Lindsay, Direct observation of bioelectrochemical processes by scanning tunneling microscopy, J. Vac. Sci Technol. A 8 (1): 645–647 (1990).CrossRefGoogle Scholar
  30. 30.
    C. Bendixen, F. Besenbacher, E. Laegsgaard, I. Stensgaard, B. Thomsen, and O.Westergaard, Deoxyribonucleic acid structures visualized by scanning tunneling microscopy, J. Vac. Sci. Technol. A8 (1): 703–705 (1990).CrossRefGoogle Scholar
  31. 31.
    D.P. Allison, J.R. Thompson, K.B. Jacobson, R.J. Warmack, and T.L. Ferrell, Scanning tunneling microscopy and spectroscopy of plasmid DNA, Scanning Microscopy 4 (3): 517–522 (1990).Google Scholar
  32. 32.
    C. Bustamante and J. Vesenka, Imaging of DNA molecules and DNA-RNA polymerase complexes by scanning force microscopy, Polymer Preprints, 33 (1): 743–744 (1992).Google Scholar
  33. 33.
    T. Thundat, R.J. Warmack, D.P. Allison, L.A. Bottomley, A.J. Lourenco, and T.L. Ferrell, Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: The effect of humidity on apparent width and image contrast, J. Vac. Sci. Technol. A 10 (4): 630–635 (1992).CrossRefGoogle Scholar
  34. 34.
    H.G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman, H. Morrett, R.L. Sinsheimer, V. Elings, C. Bustamante, P.K. Hansma, Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope, Science, 256: 1180–1184 (1992).CrossRefGoogle Scholar
  35. 35.
    J. Yang, K Takeyasu and Z. Shao, Atomic force microscopy of DNA molecules, FES 10933, 30 (2): 173–176 (1992).CrossRefGoogle Scholar
  36. 36.
    Y.L.Lyubchenko, A.A.Gall, LS.Shlyakhtenko, R.E.Harrington, B.L.Jacobs, P.I.Oden, and S. M.Lindsay, Atomic force microscopy imaging of double stranded DNA and RNA, J. of Biomolec.Struct.Dynam. 10 (3): 589–606 (1992).CrossRefGoogle Scholar
  37. 37.
    Y.L. Lyubchenko, B.L. Jacobs, and S.M. Lindsay, Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements, Nucleic Acids Res. 20 (15): 3983–3986 (1993).CrossRefGoogle Scholar
  38. 38.
    Y. Lyubchenko, L. Shlyakhtenko, R. Harrington, P. Oden, and S. Lindsay, Atomic force microscopy of long DNA: imaging in air and under water, Proc. Natl. Acad. Sci. USA, 90: 2137–2140 (1993).CrossRefGoogle Scholar
  39. 39.
    R.D. Edstrom, M.A. Miller, V.B. Elings, X. Yang, R. Yang, G. Lee, and D.F. Evans, Scanning tunneling microscopy and atomic force microscopy visualization of the components of the skeletal muscle glycogenolytic complex, J. Vac. Sci. Technol. B 9 (2): 1248–1252 (1991).CrossRefGoogle Scholar
  40. 40.
    L. Haggerty, B.A. Watson, M.A. Barteau, and A.M. Lenhoff, Ordered arrays of proteins on graphite observed by scanning tunneling microscopy, J. Vac. Sci. Technol. B 9 (2): 1219–1222 (1991).CrossRefGoogle Scholar
  41. 41.
    H. Arakawa, K. Umemura, and A. Ikai, Protein images obtained by STM, AFM, and TEM, Nature 358: 171–173 (1992).CrossRefGoogle Scholar
  42. 42.
    R. Emch, X. Clivaz, C. Taylor-Denes, P. Vaudaux, and P. Descouts, Scanning tunneling microscopy for studying the biomaterial-biological tissue interface, J. Vac. Sci. Technol. A 8 (1): 655–658 (1990).CrossRefGoogle Scholar
  43. 43.
    R. Wigren, H. Elwing, R. Andsson, S. Welin, and I. Lundstrom, Structure of adsorbed fibrinogen obtained by scanning force microscopy, FEBS 280 (2): 225–228 (1991).CrossRefGoogle Scholar
  44. 44.
    E.A.G. Chernoff, Atomic force microscope images of collagen fibers, J. Vac. Sci. Technol. A 10 (4): 596–599 (1992).CrossRefGoogle Scholar
  45. 45.
    V. B. Flings, R. D. Edstrom, M. H. Meinke, X. Yang, R. Yang, and D. F. Evans, Direct observations of enzymes and their complexes by scanning tunneling microscopy, J. Vac. Sci. Technol. A8 (1): 652–654 (1990).CrossRefGoogle Scholar
  46. 46.
    R.D. Edstrom, M.H.Meinke, X.Yang, R.Y. and D. F. Evans, Scanning tunneling microscopy of the enzymes of muscle glycogenolysis, Ultramicroscopy 33: 99–106 (1990).CrossRefGoogle Scholar
  47. 47.
    G. Lee, D.P. Evans, V. Elings, and R.D. Edstrom, Observation of phosphorylase kinase and phosphorylase b at solid-liquid interfaces by scanning tunneling microscopy, J. Vac. Technol. B 9 (2): 1236–1241 (1991).CrossRefGoogle Scholar
  48. 48.
    R.D. Edstrom, M.H. Meinke, X. Yang, R. Yang, V. Elings, and D.F. Evans, Direct visualization of phosphorylase-phosphorylase kinase complexes by scanning tunneling and atomic force microscopy, Biophys. J. 58: 1437–1448 (1990).CrossRefGoogle Scholar
  49. 49.
    H. Lewerenz, H. Jungblu S. A. Campbell, M. Giersig, and D. Muller, Direct observation of reverse transcriptases by scanning tunneling microscopy, Aids Res. Human Retrovirus. 8 (9): 1663–1667 (1992).CrossRefGoogle Scholar
  50. 50.
    C.H. Olk, J. Heremans, P.S. Lee, D. Dziedzic, and N.E. Sargent, IgG antibody and antibody-antigen complex imaging by scanning tunneling microscopy, J. Vac. Sci. Technol. B 9 (2): 1268–1271 (1991).CrossRefGoogle Scholar
  51. 51.
    J.N. Lin, B. Drake, A.S. Lea, P.K. Hansma, and J.D. Andrade, Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope, Langmuir 6 (2): 241–248 (1990).CrossRefGoogle Scholar
  52. 52.
    S.T. Eppell, F.R. Zypman, and R.E. Marchant, Probing the resolution limits and tip interactions of AFM in the study of von Willebrand Factor, Trans. Soc. Biomater., 19: 210 (1993).Google Scholar
  53. 53.
    R. Guckenberger, W. Wiegrabe, A. Hillebrand, T. Hartmann, Z. Wang, and W. Baumeister, Scanning tunneling microscopy of a hydrated bacterial surface protein, Ultramicroscopy 31: 327–332 (1989).CrossRefGoogle Scholar
  54. 54.
    R. Emch, X. Clivaz, C. Taylor-Denes, P. Vaudaux, and P. Descouts, Scanning tunneling microscopy for studying the biomaterial-biological tissue interface, J. Vac. Sci. Technol. A 8 (1): 655–658 (1990).CrossRefGoogle Scholar
  55. 55.
    R. Lal and L. Yu, Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 90:. 7280–7284 (1993).Google Scholar
  56. 56.
    J.K.H. Horber, F.M. Schuler, V. Witzemann, K.H. Schroter, H. Muller, and J.P. Ruppersberg, Imaging of cell membrane proteins with a scanning tunneling microscope, J. Vac,Sci.Technol.. B 9 (2): 1214–1217 (1991).CrossRefGoogle Scholar
  57. 57.
    J. Masai, T. Shibata, S. Kondo, and S. Ishiwata, Scanning tunneling microscopy of actin filament, J. Vac. Sci. Technol. B 9 (2): 1177–1179 (1991).CrossRefGoogle Scholar
  58. 58.
    A.L. Weisenhom, B. Drake, C.B. Prater, S.A.C. Gould, P.K. Hansma, F. Ohnesorge, M. Egger, S.-P.Heyn, and H.E.Gaub, Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy, Biophys. J. 58: 1251–1258 (1990).CrossRefGoogle Scholar
  59. 59.
    M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub, From molecules to cells: imaging soft samples with the atomic force microscope, Science 257: 1900–1905 (1992).CrossRefGoogle Scholar
  60. 60.
    B. Mainsbridge and T. Thundat, Scanning tunneling microscopy of chloroplasts, J. Vac. Sci. Technol. B9 (2): 1259–1262 (1991).CrossRefGoogle Scholar
  61. 61.
    A. Stemmer, A. Hefti, U. Aebi, and A. Engel, Scanning tunneling and transmission electron microscopy on identical areas of biological specimens, Ultramicroscopy 30: 263–280 (1989).CrossRefGoogle Scholar
  62. 62.
    R. Garcia, D. Keller, J. Panitz, D. Bear, C. Bustamante, Imaging of metal-coated biological samples by scanning tunneling microscopy, Ultramicroscopy 27: 367–374 (1989).CrossRefGoogle Scholar
  63. 63.
    K. Yeung, E. Wolf, and J. Duman, A scanning tunneling microscopy study of an insect lipoprotein ice nucleator, J. Vac. Sci. Technol. B9 (2): 1197–1201 (1991).CrossRefGoogle Scholar
  64. H.-J. Butt, C.B. Prater, and P.K. Hansma, Imaging purple membranes dry and in water with the atomic force microscope, J. Vac. Sci. Technol. B 9(2)193–1196 (1991).Google Scholar
  65. 65.
    H-J. Butt, K. Downing, and P. Hansma, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophys. J. 58: 1473–1480 (1990).CrossRefGoogle Scholar
  66. 66.
    J. Yang, L.K. Tamm, T.W. Tillack, and Z. Shao, New approach for atomic force microscopy of membrane proteins; the imaging of cholera toxin, J. Mol. Biol. 229: 286–290 (1993).CrossRefGoogle Scholar
  67. 67.
    K.A. Fisher, K.C. Yanagimoto, S.L. Whitfield, R.E. Thomson, M.G.L. Gustafsson, and J. Clarke, Scanning tunneling microscopy of planar biomembranes, Ultramicroscopy 33: 117–126 (1990).CrossRefGoogle Scholar
  68. 68.
    C.B. Prater, M.R. Wilson, and J. Gamaes, Atomic force microscopy of biological samples at low temperature, J. Vac. Sci. Technol. B 9 (2): 989–991 (1991).CrossRefGoogle Scholar
  69. 69.
    A.A. Kononenko, E.P. Lukashev, V.I. Panov, and E. Fedorov, Scanning tunneling microscopy of functionally active membrane fragments of halobacteria containing bacteriorhodopsin, Dokl. Akad. Nauk. SSSR, 315 (5): 1252–1255 (1990).Google Scholar
  70. 70.
    S.A.O. Gould, B. Drake, C.B. Prater, A.L. Weisenhom, S. Manne, H.G. Hansms, J. Massie, M. Longmire, V. Elings, B.D. Northern, B. Mukergee, C.M. Peterson, W. Stoeckenius, T.R. Albrecht, and C.F. Quate, From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope, J. Vac. Sci.Technol. A 8 (1): 369–373 (1990).CrossRefGoogle Scholar
  71. 71.
    B.L. Blackford, M.O. Watanabe, D.C. Dahn, M.H. Jericho, G. Southam, and T.J. Beveridge, The imaging of a complete biological structure with the scanning tunneling microscope, Ultramicroscopy 27: 427–432 (1989).CrossRefGoogle Scholar
  72. 72.
    B.L.Blackford and M.H. Jericho, A metallic replica/anchoring technique for scanning tunneling microscope or atomic force microscope imaging of large biological structures, J. Vac. Sci. Technol. B 9 (2): 1253–1258 (1991).CrossRefGoogle Scholar
  73. 73.
    G. Southam, M. Firtel, B.L. Blackford, M.H. Jericho, W. Xu, P.J. Mulhern, and T.J. Beveridge, Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium methanospirillum hungatei GPI, J. Bacterial. 175 (7): 1946–1955 (1993).Google Scholar
  74. 74.
    B.L. Blackford, M.H. Jericho, P.J. Mulhern, and C. Frame, Scanning tunneling microscope imaging of hoops from the cell sheath of the bacteria methanospirillum hungatei and atomic force microscope imaging of complete sheathes, J.Vac.Sci.Technol.B 9(2): 1242: 1247 (1991).Google Scholar
  75. 75.
    M.H. Jericho, B.I,. B.ackford, D.C. Dahn, C. Frame, and D. Maclean, Scanning tunneling microscopy imaging of uncoated biological material, J. Vac, Sci. Technol. A 8 (1): 661–666 (1990).CrossRefGoogle Scholar
  76. 76.
    M. Amrein, Z. Wang, and R. Guckenberger, Comparative study of a regular protein layer by scanning tunneling microscopy and transmission electron microscopy, J. Vac. Sci. Technol. B 9 (2): 1276–1281 (1991).CrossRefGoogle Scholar
  77. 77.
    W. Wiegrabe, M. Nonnenmacher, R. Guckenberger, and O.Wolter, Atomic force microscopy of a hydrated bacterial surface protein, J. Microscopy 163 (1): 79–84 (1991).CrossRefGoogle Scholar
  78. 78.
    J. Ruppersberg, J.K. Heinrich Horber, C. Gerber, and G. Binnig, Imaging of cell membraneous and cytoskeletal structures with a scanning tunneling microscope, FEBS Letters 257 (2): 460–464 (1989).CrossRefGoogle Scholar
  79. 79.
    S. Ya-Xian, J. Yue-Kan, X. San-Duo, Y. Jun-En, and L. Ke-Chun, The surface structure of artificial and natural membranes as studied by scanning tunneling microscopy, J.Vac. Sci.Technol. A 8 (1): 695–697 (1990).CrossRefGoogle Scholar
  80. 80.
    M. Gaczynska, M. Chwialkowski, W. Olejniczak, S. Woljczuk, and G. Bartosz, Scanning tunneling microscopy of human erythrocyte membranes, Biochem. Biophys. Res.Comm., 181 (2): 600–603 (1991).CrossRefGoogle Scholar
  81. 81.
    S. Singh and D.J. Keller, Atomic force microscopy of supported planar membrane bilayers, Biophys. J. 60: 1401–1410 (1991).CrossRefGoogle Scholar
  82. 82.
    M. Egger, F. Ohnesorge, A.L. Weisenhorn, S.P. Heyn, B. Drake, C.B. Prater, S.A.C. Gould, P.K. Hansma, and H.E. Gaub, Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy, J. Struct. Biol. 103: 89–94 (1990).CrossRefGoogle Scholar
  83. 83.
    C. Luo, C. Zhu, L. Ruan, G. Huang, C. Dai, Z. Cheng, C. Bai, Y. Su, S. Xu, K. Lin, and J.D. Ialdeschweiler, Scanning tunneling microscopy of the phosphatidylcholine bilayers, J. Vac. Sci..Technol. A 8 (1): 684–686 (1990).CrossRefGoogle Scholar
  84. 84.
    M. Dreschler, K.P. Hofmann, H.J. Cantow, Imaging of membrane vesicles by TEM and AFM, Polymer Preprints 33 (1): 739–740 (1992).Google Scholar
  85. 85.
    J.H. Hoh, R. Ratneshwar, S.A. John, J.P. Revel, and F. Arnsdorf, Atomic force microscopy and dissection of gap functions, Science 253: 1405–1408 (1991).CrossRefGoogle Scholar
  86. 86.
    N. Nakagiri, H. Fujisaki, and S. Aizawa, Scanning tunneling microscopy of bacterial flagella, J. Vac. Sci. Technol. B 9 (2): 1202: 1205 (1991).Google Scholar
  87. 87.
    Y. Simic’-Krstic’, M. Keley, C. Schneiker, M. Krasovich, R. McCuskey, D. Koruga, and S. IIammeroff, Direct observation of microtubules with the scanning tunneling microscope, FASEB J. 3: 2184–2188 (1989).Google Scholar
  88. 88.
    Y. Simic’-Krstic’, M. Voelker, M. Andjelkovic, M. Trifunovic, S. Hammeroff, and D. Koruga (in press).Google Scholar
  89. 89.
    S. Hammeroff, Y. Simic’-Krstic’, L. Vernetti, Y.C. Lee, D. Satid, and R. McCuskey, Scanning tunneling microscopy of cytoskeletal proteins and intermediates: microtubules and intermediate filaments, J. Vac. Soc. Technol. A 8 (1): 687–691 (1990).CrossRefGoogle Scholar
  90. 90.
    I,. Vernetti, D. Satid, A.J. Gandolphi, R.B. Nagle, S. Hammeroff, R. McCuskey, and A.E. Cress, The topographical structure of cyclokeratin intermediate filaments using scanning tunneling microscopy, Nanobiology 1: 379 (1992).Google Scholar
  91. 91.
    V.I3. Pizziconi and D.L. Page, Scanning probe microscopy of living biological cells, Polymer Preprints 33 (1): 747–748 (1992).Google Scholar
  92. 92.
    W. Haberle, J.K.H. Horber, and G. Binnig, Force microscopy on living cells, J. Vac. Sci.Technol. B 9 (2): 1210–1213 (1991).CrossRefGoogle Scholar
  93. 93.
    J.K.H. Horber, W. Haberle, F. Ohnesorge, G. Binnig, H.G. Liebich, C.P. Czerny, H. Mahnel, and A. Mayr, Investigation of living cells in the nanomater regime with the scanning force microscope, Scanning Microscopy 6 (4): 919–930 (1992).Google Scholar
  94. 94.
    H.-J. Butt, E.K. Wolff, S.A.C. Gould, B. Dixon Northern, C.M. Peterson, and P.K. Hansma, Imaging cells with the atomic force microscope, J. Struct. Biol. 105: 54–61 (1990).CrossRefGoogle Scholar
  95. 95.
    J. Yang, L.K. Tamm, A.P. Somlyo, Z. Shao, Promises and Problems of biological atomic force microscopy, J. Microscopy 171 (3): 183–198 (1993).CrossRefGoogle Scholar
  96. 96.
    M. Fritz, M. Radmacher, and H. E. Gaub, In vitro activation of human platelets triggered and probed by atomic force microscopy, Exp. Cell Res. 205: 187–190 (1993).CrossRefGoogle Scholar
  97. 97.
    J.W. Dai, Y.K. Jiao, Q. Dong, Y.X. Su, K.C. Lin, J. He, G.Y. Shang, and J.E. Yao, The surface structure of natural membrane of macrophages in water as studied by the scanning tunneling microscope, J. Vac. Sci. Technol. B 9 (2): 1184–1188 (1991).CrossRefGoogle Scholar
  98. 98.
    K. Barbee, Peter F. Davies, and Ratneshwar Lal, Shear-stress induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy, Circ. Res. 74 (1): 163–171 (1994).CrossRefGoogle Scholar
  99. 99.
    E. Henderson, P.G. Haydon, D.S. Sakaguchi, Actin filament dynamics in living glial cells imaged by atomic force microscopy, Science 257: 1944–1946 (1992).CrossRefGoogle Scholar
  100. 100.
    USA Microscopy and Analysis, January, 1994Google Scholar
  101. 101.
    L. Chang, T. Kious, M. Yorgancioglu, D. Keller, and J. Pfeiffer, Cytoskeletal of living, unstained cells imaged by scanning force microscopy, Biophys. J. 64: 1282–1286 (1993).CrossRefGoogle Scholar
  102. 102.
    E. Ito, T. Takahashi, K. Hama, T. Yohioka, W. Mizutani, H. Shimizu, and M. Ono, An approach to imaging of living cell surface topography by scanning tunneling microscopy, Biochem. & Biophys. Res.Comm. 177 (2): 636–643 (1991).CrossRefGoogle Scholar
  103. 103.
    S. Kasas, V. Gotzos, and M.R. Celio, Observation of living cells using the atomic force microscope, Biophys. J. 64: 539–544 (1993).CrossRefGoogle Scholar
  104. 104.
    C.A.J. Putman, B.G. deGrooth, P.K. Hansma, Niek F. van Hulst, and Jan Greve, Immunogold labels: cell-surface markers in atomic force microscopy, Ultramicroscopy 48: 177–182 (1993).CrossRefGoogle Scholar
  105. 105.
    A.A. Garcia and C. Pettigrew, Imaging BCG cells and yeast cell walls using scanning probe microscopy, Polymer Preprints 33 (1): 745–746 (1992).Google Scholar
  106. 106.
    T. Tomie, H. Shimizu, T. Majima, M. Yamada, T. Kanayama, H. Kondo, M. Yano, and M. Ono, Three-dimensional readout of flash x-ray images of living sperm in water by atomic force microscopy, Science, 252: 691–693 (1991).CrossRefGoogle Scholar
  107. 107.
    H. Hatano, T. Fujihara, S. Kurata, and H. Negishi, Scanning tunneling microscopic observation of dental structures of a permanent tooth, Anal. Lett., 23 (1): 47–55 (1990).CrossRefGoogle Scholar
  108. 108.
    J.A.N. Zasadzinski and P.K. Hansma, Scanning tunneling microscopy and atomic force microscopy of biological surfaces, Ann. N.Y. Acad. Sci. 589: 476–491 (1990).CrossRefGoogle Scholar
  109. 109.
    T.W. Jing, A.M. Jeffrey, J.A. DeRose, Y.L. Lyubchenko, L.S. Shlyakhtenko, R.E. Harrington, E. Appella, J. Larsen, A. Vaught, D.Rekesh, F-X. Lu, and S.M. Lindsay, Structure of hydrated oligonucleotides studied by in-situ scanning tunneling microscopy, Proc. Natl. Acad. Soc. (in press).Google Scholar
  110. 110.
    D.H. Reneker, R. Patil, and S.J. Kim, Morphology and surface interactions of polymer molecules observed with scanning tunneling and atomic force microscopy, Polymer Preprints 33 (1): 790–791 (1992).Google Scholar
  111. 111.
    J. F. Mustard, D. W. Perry, M.G. Arlie, and M.A. Packman, Preparation of suspensions of washed platelets from humans, Brit. J. Hemat. 22: 193 (1972).CrossRefGoogle Scholar
  112. 112.
    Z. Wang, T. Hartman, W. Baumeister, and R. Guckenberger, Thickness determination of biological samples with a z-calibrated scanneling tunneling microscope, Proc.Natl.Acad. Sci. 87: 9343–9347 (1990).CrossRefGoogle Scholar
  113. 113.
    R. Garcia, Comments on direct visualization of protein complexes by scanning tunneling microscopy, Biophys. J. 60: 738 (1991).CrossRefGoogle Scholar
  114. 114.
    P.D.Yurencho, E.C.Tsilibary, A.S. Charonis, and H. Furthmayr, Laminin polymerization in vitro: evidence for a two step assembly with domain specificity J. Biol. Chem. 260 (12): 7636–7644 (1985).Google Scholar
  115. 115.
    J.-Y. Yuan and Z. Shao, Simple model of image formation by scanning tunneling microscopy of non-conducting materials, Ultramicroscopy 34: 223–226 (1990).CrossRefGoogle Scholar
  116. 116.
    R. Garcia and N. Garcia, Electron conductance in organic chains: why are STM experiments possible on bare biological samples?, Chem. Phys. Lett. 173 (1): 44–50 (1990).CrossRefGoogle Scholar
  117. 117.
    P. Dietz and K.-H. Herrmann, Scanning tunneling microscopy of thin organic films on conducting substrates, Surf Sci. 232: 339–345 (1990).CrossRefGoogle Scholar
  118. 118.
    S.M. Lindsay, O.F. Sankey, Y. Li, C. Herbst, and A. Ruprecht, Pressure and resonance effects in scanning tunneling microscopy of molecular absorbates, J.Phys.Chem. 94: 4655–4660 (1990).CrossRefGoogle Scholar
  119. 119.
    S.L.Tang, A.J. McGhie, and A.Suna, Molecular-resolution imaging of insulating macromolecules with the scanning tunneling microscope via a nontunneling, electric-field induced mechanism, Phys. Rev. B 47 (7) 3850–3856 (1993).CrossRefGoogle Scholar
  120. 120.
    M. de Brabander, R. Nuydens, A. Ishihara, B. Holifield, K. Jacobson, and H. Geerts, Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with nanovid microcsopy, J. Cell Biol. 112 (1): 111–124 (1991).CrossRefGoogle Scholar
  121. 121.
    C.B. Prater, M.R. Wilson, and J. Garnaes, Atomic force microscopy of biological samples at low temperature, J. Vac.Sci.Technol. B 9 (2): 989–991 (1991).CrossRefGoogle Scholar
  122. 122.
    P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P.E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. F ukunaga, J. Gurley, and V. Elings, Tapping mode atomic force microscopy in liquids, Appl.Phys.Lett. 64 (13): 1738–1740 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Vincent B. Pizziconi
    • 1
  • Darren L. Page
    • 1
  • Catherine T. Connolly
    • 1
  • Pamela A. Diamond
    • 1
  1. 1.Chemical, Bio and Materials Engineering DepartmentArizona State UniversityTempeUSA

Personalised recommendations