Advertisement

Scanning Tunneling Microscopy of the Structural and Electronic Properties of Chemical-Vapor Deposited Diamond Films

  • J. M. Perez
  • W. Rivera
  • C. Lin
  • R. C. Hyer
  • M. Green
  • S. C. Sharma
  • D. R. Chopra
  • A. R. Chourasia

Abstract

Scanning tunneling microscopy (STM) and spectroscopy have been used to characterize the structural and electronic properties of diamond films grown using hot tungsten filament and microwave plasma chemical vapor deposition. The hot-filament-grown films contained microcrystallites measuring 50 nm, while the microwave-plasma-grown films contained larger crystallites measuring 500 nm. STM tunneling current versus voltage (I-V) curves for the hot-filament-grown films exhibit a zero-current region about the Fermi level corresponding to a surface band gap of 4.1 eV, to be compared with the bulk band gap of diamond of 5.45 eV. The surface electronic density of states computed from these I-V curves is in good agreement with x-ray photoelectron and appearance potential spectroscopies. The I-V curves for the microwave plasma grown films exhibit rectifying behavior in good agreement with a Schottky model for surface band bending.

Keywords

Scanning Tunneling Microscopy Diamond Film Tunneling Current Scanning Tunneling Microscopy Image Microwave Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Deryaguin, D. Fedoseev, N. Polyanskaya, and E. Statenkova, Epitaxial diamond-graphite graphite films, Krystallografiya 21: 433–434 (1976).Google Scholar
  2. 2.
    W. Yarbrough and R. Messier, Current issues and problems in the chemical vapor deposition of diamond, Science 242: 688–695 (1990).CrossRefGoogle Scholar
  3. 3.
    J. Mort, M. Machonkin, and K. Okumura, Density of states distribution in diamond thin films, Appl. Phys. Lett. 59: 455–457 (1992).CrossRefGoogle Scholar
  4. 4.
    H. Busman, H. Sprang, I. Herlel, W. Zimmermann-Edling, H. Güntherodt, Scanning tunneling microscopy on chemical vapor deposited diamond films, Appl. Phys. Lett. 59: 295–297 (1991).CrossRefGoogle Scholar
  5. 5.
    V. Baranauskas, M. Fukui, C. Rodrigues, N. Parizotto, V. Trava-Airoldi, Direct observation of chemical vapor deposited diamond films by atomic force microscopy, Appl. Phys. Lett. 60: 15671569 (1992).Google Scholar
  6. 6.
    L. Sutcu, M. Thompson, C. Chu, R. Haugue, J. Margrave, and M. D’Evelyn, Nanometer-scale morphology of homoepitaxial diamond films by atomic force microscopy, Appl. Phys. Lett. 60: 1685–1687 (1992).CrossRefGoogle Scholar
  7. 7.
    F. Salvan, H. Fuchs, A. Baratoff, G. Binnig, Characterization by tunneling microscopy and spectroscopy, Surf Sci. 162: 634–639 (1985).CrossRefGoogle Scholar
  8. 8.
    R. Feenstra, Scanning tunneling microscopy: semiconductor surfaces, adsorption, and epitaxy. Scanning Tunneling Microscopy and Related Methods, R.J. Behm, N. Garcia, and R. Rohrer, eds. (Kluwer, Boston) 211–240 (1990).Google Scholar
  9. 9.
    S. Sharma, M. Green, R. Hyer, C. Dark, T. Black, A. Chourasia, D. Chopra, and K. Mishra, Growth of diamond films and characterization by Raman, scanning electron microscopy, and x-ray photoelectron spectroscopy, J. Mater. Res. 5: 2424–2432 (1990).CrossRefGoogle Scholar
  10. 10.
    Burleigh Instruments, Inc., Fishers, NY 14453.Google Scholar
  11. 11.
    R Pinizzotto, private communication.Google Scholar
  12. 12.
    J. Stroscio, R. Feenstra, and A. Fein, Atom-selective imaging of the GaAs (110) surface, Phys. Rev. Lett. 58: 1192–1195 (1987).CrossRefGoogle Scholar
  13. 13.
    R. Feenstra, J. Stroscio, Tunneling spectroscopy of the GaAs (110) surface, J.Vac. Sci.Technol. B. 5: 923–929 (1987).Google Scholar
  14. 14.
    G. Rohrer, D. Bonnell, Probing the surface chemistry of polycrystalline ZnO with scanning tunneling microscopy and tunneling spectroscopy, J. Vac. Sci. Technol. B. 9: 783–788 (1991).CrossRefGoogle Scholar
  15. 15.
    W. Kaiser, L. Bell, M. Hecht, F. Grunthaner. Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen-terminated silicon surfaces, J. Vac. Sci. Technol. A. 6: 519–523 (1988).CrossRefGoogle Scholar
  16. 16.
    V. Berkovits, L. Ivantsov, I. Makarenko, T. L’vova, R. Khasieva, V. Safarov, Scanning tunnel microscope investigation of the surface of gallium arsenide passivated in an aqueous solution of Na2S, Soy. Phys. Semicond. 25: 31–234 (1991).Google Scholar
  17. 17.
    K. Miyata, Y. Matsui, K. Kumagai, S. Miauchi, K. Kobashi, A. Nakaue, Characteristics of metal point contacts on diamond thin films, New Diamond Science and Technology, edited by R. Messier J. Glass, J. Butler, R. Roy (Materials Research Society, Pittsburgh), 981–986 (1991).Google Scholar
  18. 18.
    P. Martensson, R. Feenstra, Geometric and electronic structure of antimony on the GaAs (110) surface studied by scanning tunneling microscopy, Phys. Rev. B. 39: 7744–7753 (1989).CrossRefGoogle Scholar
  19. 19.
    A. Chourasia, D. Chopra, S. Sharma, M. Green, C. Dark, R. Hyer, Characterization of low pressure deposited diamond films by X-ray photoelectron spectroscopy, Thin Solid Films 193/194: 10791086 (1990).Google Scholar
  20. 20.
    D. Chopra, A. Chourasia, Appearance potential spectroscopy of solid surfaces, Scanning Microscopy 2: 677–702 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. M. Perez
    • 1
  • W. Rivera
    • 1
    • 2
  • C. Lin
    • 1
  • R. C. Hyer
    • 3
  • M. Green
    • 3
  • S. C. Sharma
    • 3
  • D. R. Chopra
    • 4
  • A. R. Chourasia
    • 4
  1. 1.Department of PhysicsUniversity of North TexasDentonUSA
  2. 2.Universidad del CaucaPopayanColombia
  3. 3.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Department of PhysicsEast Texas State UniversityCommerceUSA

Personalised recommendations