Advertisement

Scanning Tunneling Microscopy of Porous Silicon-Based Surfaces

  • Gerardo B. Amisola
  • Ralf Behrensmeier
  • James M. Galligan
  • Fred A. Otter
  • Fereydoon Namavar
  • Nadar M. Kalkhoran

Abstract

The ability of porous silicon to emit visible light of different wavelengths has been the subject of intense study. While many groups have reported visible light emission from this material, no consistent theory has emerged to explain the effect. Many agree though that understanding the surface structure of this material is an important step in determining the physical processes responsible for luminescence, particularly for the quantum confinement models. Therefore, the scanning tunneling microscope (STM) and the atomic force microscope (AFM) are used to characterize the surface morphology of several porous silicon-based surfaces. A 7 nm gold coating was initially used to get an accurate estimate of vertical dimensions in the porous silicon layer. While a second coating of a 150 nm indium tin oxide on porous silicon was too thick to gain any structural data, changes in the tunnel current (I) and bias voltage (V) curves with respect to ambient light intensity showed that a photovoltaic effect was present in this heterojunction device. Finally, STM and AFM scans (in an inert He atmosphere) of bare photoluminescent porous silicon formed on p− and p+ Si wafers showed that these surfaces are composed of a random network of nanometer-scale features. However, no features of the size and geometry consistent with the quantum wire model for luminescence were observed in all the scans taken of these surfaces.

Keywords

Atomic Force Microscopy Porous Silicon Scanning Tunneling Microscopy Quantum Wire Tunnel Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. I. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57: 1046–1048 (1990).CrossRefGoogle Scholar
  2. 2.
    J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romenstain, and R.M. Macfarlane, Mechanisms of visible light from clectro-oxidized porous silicon, Phys. Rev. B. 14: 171–176 (1992).Google Scholar
  3. 3.
    P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, and M.S. Brandt, Siloxene:Chemical quantum confinement due to oxygen in a silicon matrix, Phys. Rev. Lett. 69: 2531–2534 (1992).CrossRefGoogle Scholar
  4. 4.
    S.M. Prokes, W.E. Carlos, and V.M. Bermudez, Luminescence cycling and defect density measurements in porous silicon: Evidence for hydride based model, Appl. Phys. Lett. 60: 1447–1449 (1992).CrossRefGoogle Scholar
  5. 5.
    R.P. Vasquez, R.W. Fathauer, T. George, A. Ksendov, and T.L. Lin, Electronic structure of light emitting porous silicon, Appl. Phys. Lett. 60: 1004–1006 (1992).CrossRefGoogle Scholar
  6. 6.
    A. Nakajima, T. Itakura, S. Watanabe and N. Nakayama, Photoluminescence of porous silicon, oxidized then deoxidized chemically, Appl. Phys. Lett. 61: 46–48 (1992).CrossRefGoogle Scholar
  7. 7.
    J. M. Macaulay, F.M. Ross, P.C. Searson, S.K Sputz, R. People, and L.E. Friedersdorf, Microstructural characterization of photoluminescent porous silicon Light, in “Emission from Silicon,” S.S. Iyer, L. T. Canham and R.P. Collins eds., Mat. Res. Soc., Pittsburgh PA, 256: 47–51(1992).Google Scholar
  8. 8.
    Y.H. Xie, W.L Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M. Macaulay, and T.D. Harris, Luminescence and structural study of porous silicon films, J. Appl. Phys. 71: 2403–2407 (1992).CrossRefGoogle Scholar
  9. 9.
    L.D. Bell, W. J. Kaiser, M.H. Hecht, and F.J. Grunthaner, Direct control and charaterization of a Schottky barrier by scanning tunneling microscopy, Appl. Phys. Lett. 52: 278–280 (1988).CrossRefGoogle Scholar
  10. 10.
    E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, and T.B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. B. 57: 249–252 (1986).Google Scholar
  11. 11.
    R.C. Anderson, R.S. Muller, and C.W. Tobias, Investigations of the electrical, properties of porous silicon, J. Electrochem. Soc. 138: 3406–3411 (1991).CrossRefGoogle Scholar
  12. 12.
    F. Namavar, H.P. Maruska, and N.M. Kalkhoran, Visible electroluminescence from porous silicon np heterojunction diodes, Appl. Phys. Lett. 60: 2514–2516 (1992).CrossRefGoogle Scholar
  13. 13.
    V. Lehmann, H. Cerva, and U. Gosele, Pore formation and propagation mechanism in porous silicon, in “Light Emission from Silicon,” in S.S. Iyer, L.T. Canham and R.P. Collins, eds. Mat. Res. Soc., Pittsburgh PA, 256: 3–6 (1992).Google Scholar
  14. 14.
    G. B. Amisola, R. Behrensmeier, J. M. Galligan, F. A. Otter, F. Namavar, and N.M. Kalkhoran, Scanning probe microscopy and scanning tunneling spectroscopy of porous silicon, Appl. Phys Lett. 61: 2595–2597 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gerardo B. Amisola
    • 1
  • Ralf Behrensmeier
    • 1
  • James M. Galligan
    • 1
  • Fred A. Otter
    • 1
  • Fereydoon Namavar
    • 2
  • Nadar M. Kalkhoran
    • 2
  1. 1.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Spire CorporationBedfordUSA

Personalised recommendations