Advertisement

Electron Impact Ionization of Plasma Edge Atoms

  • T. D. Märk

Abstract

Plasma consists, in general, of electrons, ions, and neutral particles. The most efficient and dominant process for producing these ions is electron impact ionization.1 Besides plasma physics, many (fundamental and applied) areas of science, such as gas laser physics,2 quantitative mass spectrometry,3 and radiobiology,4 require accurate data sets on the electron impact ionization cross sections σ as a function of incident electron energy E in order to allow an understanding and description of the basic phenomena in the ionized media.

Keywords

Electron Impact Ionization Ionization Cross Section Partial Cross Section Total Ionization Cross Section Cross Section Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.D. Märk, Plasma Phys. Controlled Fusion 34, 2083–2090 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    M. Janossy, L. Csillag, Z. Donko, and K. Rozsa, Acta Phys. Hung. 73, 311–343 (1993).Google Scholar
  3. 3.
    T. D. Märk and G. H. Dunn, Electron Impact Ionization, Springer-Verlag, Vienna (1985).CrossRefGoogle Scholar
  4. 4.
    M. Inokuti (ed.), Atomic and Molecular Data for Radiotherapy, IAEA-TECDOC, 799 (1995).Google Scholar
  5. 5.
    T. D. Mark, in Electron-Molecule Interactions and Their Applications, Vol. 1 (L. G. Christophorou, ed.), Academic Press, Orlando (1984), pp. 251–334.CrossRefGoogle Scholar
  6. 6.
    T. D. Märk, in Gaseous Ion Chemistry and Mass Spectrometry (J. H. Futrell, ed.), John Wiley & Sons, New York (1986), pp. 61–93.Google Scholar
  7. 7.
    T. D. Märk, Int. J. Mass Spectrom. Ion Processes 79, 1–59 (1987).CrossRefGoogle Scholar
  8. 8.
    T. D. Märk, Int. J. Mass Spectrom. Ion Processes 107, 143–163 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    T. D. Märk, in Linking the Gaseous and Condensed Phases of Matter: The Behavior of Slow Electrons (L. G. Christophorou, W. F. Schmidt, and E. Illenberger, eds.), Plenum, New York (1994).Google Scholar
  10. 10.
    T. D. Märk and A. W. Castleman, Jr., Adv. Atom. Mol. Phys. 20, 65–172 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    A. Crowe, J. A. Preston, and J. W. McConkey, J. Chem. Phys. 57, 1620–1625 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    T. D. Märk, Int. J. Mass Spectrom. Ion Phys. 45, 125–145 (1982).ADSGoogle Scholar
  13. 13.
    T. D. Märk, Beitr. Plasmaphysik 22, 257–294 (1982).CrossRefGoogle Scholar
  14. 14.
    H.S.W. Massey, E. H. S. Burhop, and H. B. Gilbody, Electronic and Ionic Phenomena, Clarendon Press, Oxford (1969).Google Scholar
  15. 15.
    F. H. Field and J. L. Franklin, Electron Impact Phenomena, Academic Press, New York (1970).Google Scholar
  16. 16.
    E. Illenberger and J. Momigny, Gaseous Molecular Ions, Steinkopff, Darmstadt (1992).CrossRefGoogle Scholar
  17. 17.
    L. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1–35 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    F. J. de Heer and M. Inokuti, in Electron Impact Ionization (T. D. Mark and G. H. Dunn, eds.), Springer-Verlag, Vienna, (1985), pp. 232–276.CrossRefGoogle Scholar
  19. 19.
    T. D. Mark, in Electron Impact Ionization (T. D. Mark and G. H. Dunn, eds.), Springer-Verlag, Vienna, (1985), pp. 137–197.CrossRefGoogle Scholar
  20. 20.
    J. T. Tate and P. T. Smith, Phys. Rev. 39, 270–277 (1932).ADSCrossRefGoogle Scholar
  21. 21.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464–1479 (1965).ADSCrossRefGoogle Scholar
  22. 22.
    R. S. Freund, in Swarm Studies and Inelastic Electron-Molecule Collisions (L. C. Pitchford, B. V McKoy, A. Chutjian, and S. Trajmar, eds.), Springer-Verlag, New York (1987), pp. 329–346.CrossRefGoogle Scholar
  23. 23.
    R. S. Freund, R. C. Wetzel, R. J. Shul, and T. R. Hayes, Phys. Rev. A 41, 3575–3595 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    C. J. Cook and J. R. Peterson, Phys. Rev. Lett. 9, 164–166 (1962).ADSCrossRefGoogle Scholar
  25. 25.
    D. L. Ziegler, J. H. Newman, K. A. Smith, and R. F. Stebbings, Planet. Space Sci. 30, 451–456 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    R. G. Montague, M. F A. Harrison, and A. C. H. Smith, J. Phys. B 17, 3295–3310 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    V. Tarnovsky and K. Becker, Z. Phys. D 22, 603–610 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    K. Becker, in Proceedings of the XVIIIth International Conference on Physics of Electronic and Atomic Collisions, Aarhus, 1993, pp. 234–248.Google Scholar
  29. 29.
    M. R. H. Rudge, Rev. Mod. Phys. 40, 564–590 (1968).ADSCrossRefGoogle Scholar
  30. 30.
    S. M. Younger, in Electron Impact Ionization (T. D. Mark and G. H. Dunn, eds.), Springer-Verlag, Vienna (1985), pp. 1–23.CrossRefGoogle Scholar
  31. 31.
    S. M. Younger and T. D. Märk, in Electron Impact Ionization (T. D. Märk and G. H. Dunn, eds.), Springer-Verlag, Vienna (1985), pp. 24–41.CrossRefGoogle Scholar
  32. 32.
    H. Deutsch and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 70, R1–R8 (1987).CrossRefGoogle Scholar
  33. 33.
    Y. K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954–3967 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    T. D. Märk and M. E. Rudd, in ICRU Report on Secondary Electron Spectra, International Commission on Radiation Units, Bethesda, Maryland (1995), Chapter 3.Google Scholar
  35. 35.
    J. J. Thomson, Phil. Mag. 23, 449–457 (1912).Google Scholar
  36. 36.
    M. Gryzinski, Phys. Rev. A 138, 305–358 (1965).MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    A. Burgess, in Atomic Collision Processes (M. R. C. McDowell, ed.), North-Holland, Amsterdam (1964), pp. 237–242.Google Scholar
  38. 38.
    L. Vriens, Phys. Rev. 141, 88–141 (1966).ADSCrossRefGoogle Scholar
  39. 39.
    H. Deutsch, P. Scheier, and T D. Mark, Int. J. Mass Spectrom. Ion Processes. 74, 81–95 (1986).CrossRefGoogle Scholar
  40. 40.
    K. L. Bell, H. B. Gilbody, G. G. Hughes, A. E. Kingston, and F J. Smith, J. Phys. Chem. Ref. Data 12, 891–916(1983).ADSCrossRefGoogle Scholar
  41. 41.
    W. Lotz, Astrophys. J. Suppl. 128, 207–238 (1967).ADSCrossRefGoogle Scholar
  42. 42.
    W. Lotz, Z. Phys. 206, 205–211 (1967).ADSCrossRefGoogle Scholar
  43. 43.
    W. Lotz, Z. Phys. 216, 241–247 (1968).ADSCrossRefGoogle Scholar
  44. 44.
    W. Lotz, Z. Phys. 232, 101–107 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    H. Bethe, Ann. Physik 5, 325–400 (1930).ADSMATHCrossRefGoogle Scholar
  46. 46.
    W. F. Miller and R. L. Platzman, Proc. Phys. Soc. A 70, 299–303 (1957).ADSMATHCrossRefGoogle Scholar
  47. 47.
    J. W. Otvos and D. P. Stevenson, J. Am. Chem. Soc. 78, 546–551 (1956).CrossRefGoogle Scholar
  48. 48.
    J. B. Mann, J. Chem. Phys. 46, 1646–1651 (1967).ADSCrossRefGoogle Scholar
  49. 49.
    D. Margreiter, H. Deutsch, and T D. Märk, Contrib. Plasma Phys. 30, 487–495 (1990).ADSCrossRefGoogle Scholar
  50. 50.
    D. Margreiter, H. Deutsch, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes, 139, 127–139 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    J. C. Halle, H. H. Lo, and W. L. Fite, Phys. Rev. A 23, 1708–1716 (1981).ADSCrossRefGoogle Scholar
  52. 52.
    H. Deutsch, D. Margreiter, and T. D. Mark, Z. Phys. D 29, 31–37 (1944).ADSCrossRefGoogle Scholar
  53. 53.
    H. Deutsch and T. D. Märk, Contrib. Plasma Phys. 34, 19–24 (1994).ADSCrossRefGoogle Scholar
  54. 54.
    M. B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501–3514 (1987).ADSCrossRefGoogle Scholar
  55. 55.
    M. B. Shah, D. S. Elliott, P. McCallion, and H. B. Gilbody, J. Phys. B 21, 2751–2761 (1988).ADSCrossRefGoogle Scholar
  56. 56.
    Y. K. Kim, in Physics of Ion-Ion and Electron-Ion Collisions (F. Brouillard and J. W. McGowan, eds.), Plenum, New York (1983), pp. 101–165.CrossRefGoogle Scholar
  57. 57.
    F. F. Rieke and W. Prepejchal, Phys. Rev. A 6, 1507–1519 (1972).ADSCrossRefGoogle Scholar
  58. 58.
    B. L. Schram, M. J. van der Wiel, F. J. deHeer, and H. R. Moustafa, J. Chem. Phys. 44, 49–54 (1966).ADSCrossRefGoogle Scholar
  59. 59.
    E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B 11, 3115–3132 (1978).ADSCrossRefGoogle Scholar
  60. 60.
    A. C. W. Smith, E. Caplinger, R. H. Neynaber, E. W. Rothe, and S. M. Trujillo, Phys. Rev. 127, 1647–1649(1962).ADSCrossRefGoogle Scholar
  61. 61.
    W. L. Fite and R. T. Brackmann, Phys. Rev. 113, 815–816 (1959).ADSCrossRefGoogle Scholar
  62. 62.
    E. W. Rothe, L. L. Marino, R. H. Neynaber, and S. M. Trujillo, Phys. Rev. 125, 582 (1962).ADSCrossRefGoogle Scholar
  63. 63.
    G. Peach, J. Phys. B 3, 328–349 (1970);ADSCrossRefGoogle Scholar
  64. 63a.
    G. Peach, J. Phys. B 4, 1670–1677 (1971).ADSCrossRefGoogle Scholar
  65. 64.
    K. Omdivar, H. L. Kyle, and E. C. Sullivan, Phys. Rev. A 5, 1174–1187 (1972).ADSCrossRefGoogle Scholar
  66. 65.
    E. J. McGuire, Phys. Rev. A 3, 267–279 (1971).ADSCrossRefGoogle Scholar
  67. 66.
    P. T. Smith, Phys. Rev. 36, 1293–1302 (1930).ADSCrossRefGoogle Scholar
  68. 67.
    B. L. Schram, F. J. deHeer, M. J. van der Wiel, and J. Kistemaker, Physica 31, 94–112 (1965).ADSCrossRefGoogle Scholar
  69. 68.
    B. L. Schram, H. R. Moustafa, J. Schutten, and F. J. deHeer, Physica 32, 734–740 (1966).ADSCrossRefGoogle Scholar
  70. 69.
    A. Gaudin and R. Hagemann, J. Chim. Phys. 64, 1209–1221 (1967).Google Scholar
  71. 70.
    J. Fletcher and I. R. Cowling, J. Phys. B 6, L258–L261 (1973).ADSCrossRefGoogle Scholar
  72. 71.
    E. Krishnakumar and S. K. Srivastava, J. Phys. B 21, 1055–1082 (1988).ADSCrossRefGoogle Scholar
  73. 72.
    R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, and R. S. Freund, Phys. Rev. A 35, 559–577 (1987).ADSCrossRefGoogle Scholar
  74. 73.
    G. W. McClure, Phys. Rev. 90, 796–803 (1953).ADSCrossRefGoogle Scholar
  75. 74.
    M. V. Kurepa, I. M. Cadez, and V. M. Pejcev, Fizika 6, 185–209 (1974).Google Scholar
  76. 75.
    P. McCallion, M. B. Shah, and H. B. Gilbody, J. Phys. B 25, 1061–1071 (1992).ADSCrossRefGoogle Scholar
  77. 76.
    H. Tawara and T. Kato, At. Data Nucl. Data Tables 36, 167–353 (1987).ADSCrossRefGoogle Scholar
  78. 77.
    M. A. Lennon, K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kinston, M. J. Murray, and F. J. Smith, J. Phys. Chem. Ref. Data 17, 1285–1363 (1988).ADSCrossRefGoogle Scholar
  79. 78.
    I. Shimamura, Sci. Papers Inst. Phys. Chem. Res. (Jpn.) 82, 1–51 (1989).Google Scholar
  80. 79.
    D. Margreiter, G. Walder, H. Deutsch, H. U. Poll, C. Winkler, K. Stephan, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 100, 143–156 (1990).CrossRefGoogle Scholar
  81. 80.
    J. A. Syage, J. Phys. B 24, L527–L532 (1991).ADSCrossRefGoogle Scholar
  82. 81.
    F. Aumayr, T. D. Märk, and H. Winter, Int. J. Mass Spectrom. Ion Processes 129, 17–29 (1993).ADSCrossRefGoogle Scholar
  83. 82.
    T. D. Märk, IAEA-TECDOC 506, 179–193 (1989).Google Scholar
  84. 83.
    V. Grill, G. Walder, D. Margreiter, T. Rauth, H. U. Poll, P. Scheier, and T. D. Mark, Z. Phys. D 25, 217–226 (1993).ADSCrossRefGoogle Scholar
  85. 84.
    K. Stephan, H. Helm, and T. D. Mark, J. Chem. Phys. 73, 3763–3778 (1980).ADSCrossRefGoogle Scholar
  86. 85.
    K. Stephan, H. Deutsch, and T. D. Mark, J. Chem. Phys. 83, 5712–5720 (1985).ADSCrossRefGoogle Scholar
  87. 86.
    K. Leiter, P. Scheier, G. Walder, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 87, 209–224 (1989).CrossRefGoogle Scholar
  88. 87.
    H. U. Poll, C. Winkler, D. Margreiter, V. Grill, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 112, 1–17(1992).ADSCrossRefGoogle Scholar
  89. 88.
    S. P. Khare and W. J. Meath, J. Phys. B 20, 2101–2116 (1987).ADSCrossRefGoogle Scholar
  90. 89.
    A. J. Dixon, M. F. A. Harrison, and A. C. H. Smith, in Proceedings of the VIIIth International Conference on Physics of Electronic and Atomic Collision, Belgrad, 1973, 405–406.Google Scholar
  91. 90.
    D. Ton-That and M. R. Flannery, Phys. Rev. A 15, 517–526 (1977).ADSCrossRefGoogle Scholar
  92. 91.
    E. J. Mc Guire, Phys. Rev. A 20, 445–456 (1979).ADSCrossRefGoogle Scholar
  93. 92.
    B. L. Schram, J. H. Boerboom, and J. Kistemaker, Physica 32, 185–196 (1966).ADSCrossRefGoogle Scholar
  94. 93.
    N. Nagy, P. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249–1267 (1980).ADSCrossRefGoogle Scholar
  95. 94.
    C. J. Powell, in Electron Impact Ionization (T. D. Märk and G. W. Dunn, eds.), Springer-Verlag, Vienna (1985), pp. 198–231.CrossRefGoogle Scholar
  96. 95.
    R. Hippler, in Progress in Atomic Spectroscopy (H. G. Kleinpoppen, ed.), Plenum, New York (1984), pp. 511–575.Google Scholar
  97. 96.
    R. Hippler, K. Saeed, I. McGregor, and H. Kleinpoppen, Z. Phys. A 307, 83–87 (1982).ADSCrossRefGoogle Scholar
  98. 97.
    H. Tawara, K. G. Harrison, and F. J. deHeer, Physica 63, 351–367 (1973).ADSCrossRefGoogle Scholar
  99. 98.
    R. Hippler and W. Jitschin, Z. Phys. A 307, 287–292 (1982).ADSCrossRefGoogle Scholar
  100. 99.
    D. L. Moores, L. B. Golden, and D. H. Samson, J. Phys. B 13, 385–395 (1980).ADSCrossRefGoogle Scholar
  101. 100.
    J. H. Scofield, Phys. Rev. A 18, 963–970 (1978).ADSCrossRefGoogle Scholar
  102. 101.
    S. Reusch, H. Genz, W. Löw, and A. Richter, Z. Phys. D 3, 379–389 (1986).ADSCrossRefGoogle Scholar
  103. 102.
    R. H. McFarland and J. D. Kinney, Phys. Rev. A 137, 1058–1061 (1965).ADSCrossRefGoogle Scholar
  104. 103.
    D. L. Ziegler, J. H. Newman, K. A. Smith, and R. F. Stebbings, Planet. Space Sci. 30, 451–456 (1982).ADSCrossRefGoogle Scholar
  105. 104.
    B. L. Schram, Physica 32, 197–208 (1966).ADSCrossRefGoogle Scholar
  106. 105.
    C. Ma, C. R. Sporleder, and R. A. Bonham, Rev. Sci. Instrum. 62, 909–923 (1991).ADSCrossRefGoogle Scholar
  107. 106.
    J. A. Syage, Phys. Rev. A 46, 5666–5679 (1992).ADSCrossRefGoogle Scholar
  108. 107.
    K. Stephan and T. D. Märk, J. Chem. Phys. 81, 3116–3117 (1984).ADSCrossRefGoogle Scholar
  109. 108.
    M. A. Bolorizadeh, C. J. Patton, M. B. Shah, and H. B. Gilbody, J. Phys. B 27, 175–183 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • T. D. Märk
    • 1
  1. 1.Institut für IonenphysikLeopold Franzens UniversitätInnsbruckAustria

Personalised recommendations