Advertisement

Particle Interchange Reactions Involving Plasma Impurity Ions and H2, D2, and HD

  • P. B. Armentrout
  • J. Botero

Abstract

The edge plasma in a tokamak nuclear fusion reactor is characterized by low plasma temperatures and high plasma densities. In the divertor region, the plasma temperature may be as low as a few electron volts, and plasma densities may be as high as 1017 cm-3.1 An important consequence of the low edge plasma temperature is that molecular species are present in this region, resulting either from plasma-wall interactions (e.g., hydrocarbons) or from recycling and plasma fueling (molecular hydrogen and its isotopes). In addition to the primary constituents of the plasma, for example D, T, and He (in D-T plasmas) and H, D, and He in the present tokamaks, a relatively large variety of atomic impurities (at concentrations between 0.1 and 10%) are present. The most common impurity-generating processes are particle-surface interaction processes, mainly desorption, physical sputtering, and evaporation. The main impurities in the plasma edge of most of the present-generation tokamaks and fusion reactor designs are carbon (≤10%), oxygen (≤5%), various metallic (and related) impurities originating from structural materials (Ti, V, Cr, Fe, Ni, Cu, Al, Mo, Mn, Mg, B, Si, Ge, Nb, Ag; with a concentration of ≤2%), and various diagnostic species (Li, Ne, Ar). Under these plasma conditions, a wide range of atomic and molecular processes that are not important in the core plasma become relevant.

Keywords

Transition State Theory Surface Ionization Electron Volt Neutral Reactant Drift Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Janev, M. F. A. Harrison, and H. W. Drawin, Nucl. Fusion 29, 109 (1989).CrossRefGoogle Scholar
  2. 2.
    V. L. Talrose, P. S. Vinogradov, and I. K. Larin, in Gas Phase Ion Chemistry, Vol. 1 (M. Bowers, ed.), Academic Press, New York (1979), p. 305.Google Scholar
  3. 3.
    P.B. Armentrout, in Advances in Gas Phase Ion Chemistry, Vol. 1 (N. G. Adams and L. M. Babcock, eds.), Jai Press, Greenwich, Connecticut (1992), p. 83.Google Scholar
  4. 4.
    G. Gioumousis and D. P. Stevenson, J. Chem. Phys. 29, 294 (1958).ADSCrossRefGoogle Scholar
  5. 5.
    P. B. Armentrout, in Structure/Reactivity and Thermochemistry of Ions (P. Ausloos and S. G. Lias, eds.), D. Reidel, Dordrecht (1987), pp. 97–164.CrossRefGoogle Scholar
  6. 6.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    L. S. Sunderlin and P. B. Armentrout, Chem. Phys. Lett. 167, 188 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    R. H. Schultz and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 107, 29 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    N. R. Daly, Rev. Sci. Instrum. 31, 264 (1959).ADSCrossRefGoogle Scholar
  10. 10.
    J. D. Burley, K. M. Ervin, and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 80, 153 (1987).CrossRefGoogle Scholar
  11. 11.
    J. D. Burley and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 84, 157 (1988).CrossRefGoogle Scholar
  12. 12.
    E. R. Fisher and P. B. Armentrout, J. Chem. Phys. 94, 1150 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    E. Teloy and D. Gerlich, Chem. Phys. 4, 417 (1974); D. Gerlich, Diplomarbeit, University of Freiburg, 1971.ADSCrossRefGoogle Scholar
  14. 14.
    D. Gerlich, Adv. Chem. Phys. 82, 1 (1992).CrossRefGoogle Scholar
  15. 15.
    K. M. Ervin, Ph.D. Thesis, University of California, Berkeley, 1986.Google Scholar
  16. 16.
    P. J. Chantry, J. Chem. Phys. 55, 2746 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    C. Lifshitz, R. L. C. Wu, T. O. Tiernan, and D. T. Terwilliger, J. Chem. Phys. 68, 247 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 89, 5626 (1985).CrossRefGoogle Scholar
  19. 19.
    L. S. Sunderlin and P. B. Armentrout, J. Phys. Chem. 92, 1209 (1988).CrossRefGoogle Scholar
  20. 20.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 84, 6738 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    D. G. Leopold, K. K. Murray, A. E. S. Miller, and W. C. Lineberger, J. Chem. Phys. 83, 4849 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    S. T. Graul and R. R. Squires, Mass Spectrom. Rev. 7, 263 (1988).CrossRefGoogle Scholar
  23. 23.
    A. Bjerre and E. E. Nikitin, Chem. Phys. Lett. 1, 179 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    E. Bauer, E. R. Fischer, and F. R. Gilmore, J. Chem. Phys. 51, 4173 (1969); M. S. Child and M. Baer, J. Chem. Phys. 74, 2832 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    M. Baer, Adv. Chem. Phys. 82 (Part II), 202 (1992);Google Scholar
  26. 25a.
    M. Baer, C. Y. Ng, and D. Neuhauser, Chem. Phys. Lett. 93, 4845 (1990).Google Scholar
  27. 26.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 84, 6750 (1986).ADSCrossRefGoogle Scholar
  28. 27.
    M. Gutowski, M. Roberson, J. Rusho, J. Nichols, and J. Simons, J. Chem. Phys. 99, 2601 (1993).ADSCrossRefGoogle Scholar
  29. 28.
    C. D. Light, J. Chem. Phys. 40, 3221 (1964);ADSCrossRefGoogle Scholar
  30. 28a.
    P. Pechukas and J. C. Light, J.Chem. Phys. 42, 3281 (1965).MathSciNetADSCrossRefGoogle Scholar
  31. 29.
    E. E. Nikitin, Teor. Eksp. Khim. 1, 135, 144, 248 (1965) [Engl. trans.: Theor. Exp. Chem. 1, 83, 90, 275 (1975)].Google Scholar
  32. 30.
    J. Light, J. Chem. Phys. 43, 3209 (1965).MathSciNetADSCrossRefGoogle Scholar
  33. 31.
    D. A. Webb and W. J. Chesnavich, J. Phys. Chem. 87, 3791 (1983).CrossRefGoogle Scholar
  34. 32.
    W. J. Chesnavich and M. T. Bowers, J. Chem. Phys. 66, 2306 (1977).ADSCrossRefGoogle Scholar
  35. 33.
    P. B. Armentrout, in Isotope Effects in Chemical Reactions and Photodissociation Processes (J. A. Kaye, ed.), ACS Symp. Ser. 502, 194 (1992).CrossRefGoogle Scholar
  36. 34.
    L. S. Sunderlin and P. B. Armentrout, J. Chem. Phys. 100, 5639 (1994).ADSCrossRefGoogle Scholar
  37. 35.
    D. Gerlich, R. Disch, and S. Scherbarth, J. Chem. Phys. 87, 350 (1987).ADSCrossRefGoogle Scholar
  38. 36.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).Google Scholar
  39. 37.
    G. D. Flesch and C. Y. Ng, J. Chem. Phys. 94, 2372 (1991).ADSCrossRefGoogle Scholar
  40. 38.
    J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 88, 5454 (1984).CrossRefGoogle Scholar
  41. 39.
    J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).Google Scholar
  42. 40.
    P. B. Armentrout, Int. Rev. Phys. Chem. 9, 115 (1990).CrossRefGoogle Scholar
  43. 41.
    J. L. Elkind and P. B. Armentrout, unpublished data (1985).Google Scholar
  44. 42.
    J. L. Elkind and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 83, 259 (1988).CrossRefGoogle Scholar
  45. 43.
    S. Ruatta, L. Hanley, and S. L. Anderson, J. Chem. Phys. 91, 226 (1989).ADSCrossRefGoogle Scholar
  46. 44.
    J. L. Elkind and P. B. Armentrout, J. Chem. Phys. 86, 1868 (1987).ADSCrossRefGoogle Scholar
  47. 45.
    J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 90, 5736 (1986).CrossRefGoogle Scholar
  48. 46.
    J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 90, 6576 (1986).CrossRefGoogle Scholar
  49. 47.
    J. L. Elkind and P. B. Armentrout, unpublished data (1986).Google Scholar
  50. 48.
    J. L. Elkind and P. B. Armentrout, J. Chem. Phys. 84, 4862 (1986).ADSCrossRefGoogle Scholar
  51. 49.
    Y.-M. Chen, P. B. Armentrout, and J. L. Elkind, J. Phys. Chem. 99, in press (1995).Google Scholar
  52. 50.
    N. F. Dalleska, K. C. Crellin, and P. B. Armentrout, J. Phys. Chem. 97, 3123 (1993).CrossRefGoogle Scholar
  53. 51.
    R. Georgiadis and P. B. Armentrout, J. Phys. Chem. 92, 7060 (1988).CrossRefGoogle Scholar
  54. 52.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 86, 6240 (1987).ADSCrossRefGoogle Scholar
  55. 53.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 85, 6380 (1986).ADSCrossRefGoogle Scholar
  56. 54.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 90, 118 (1989).ADSCrossRefGoogle Scholar
  57. 55.
    J. L. Elkind, L. S. Sunderlin, and P. B. Armentrout, J. Phys. Chem. 93, 3151 (1989).CrossRefGoogle Scholar
  58. 56.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 86, 2659 (1987).ADSCrossRefGoogle Scholar
  59. 57.
    P. Tosi, O. Dmitriev, D. Bassi, O. Wick, and D. Gerlich, J. Chem. Phys. 100, 4300 (1994).ADSCrossRefGoogle Scholar
  60. 58.
    G. F. Stowe, R. H. Schultz, C. A. Wight, and P. B. Armentrout, Int. J. Moss Spectrom. Ion Processes 100, 177 (1990).CrossRefGoogle Scholar
  61. 59.
    M. E. Weber, N. F. Dalleska, B. L. Tjelta, E. R. Fisher, and P. B. Armentrout, J. Chem. Phys. 98, 7855 (1993).ADSCrossRefGoogle Scholar
  62. 60.
    R. H. Schultz and P. B. Armentrout, J. Chem. Phys. 96, 1036 (1992).ADSCrossRefGoogle Scholar
  63. 61.
    R. H. Schultz and P. B. Armentrout, J. Chem. Phys. 96, 1046 (1992).ADSCrossRefGoogle Scholar
  64. 62.
    C. L. Liao and C. Y. Ng, J. Chem. Phys. 84, 197 (1986).ADSCrossRefGoogle Scholar
  65. 62a.
    J. D. Shao and C. Y. Ng, J. Chem. Phys. 84, 4317 (1986).ADSCrossRefGoogle Scholar
  66. 63.
    J. L. Elkind and P.B. Armentrout, J. Phys. Chem. 91, 2037 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. B. Armentrout
    • 1
  • J. Botero
    • 2
  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.International Atomic Energy AgencyViennaAustria

Personalised recommendations