Energy and Angular Distributions of Secondary Electrons Produced by Electron Impact Ionization

  • Yong-Ki Kim


Atomic and molecular cross sections for electron impact ionization are of fundamental importance in modeling the interaction of charged particles with matter. In order to follow the history of the ejected electrons and understand the subsequent events and products, not only the total ionization cross sections but often the cross sections differential in ejected electron energies and angles are also needed.


Angular Distribution Secondary Electron Differential Cross Section Primary Electron Ionization Cross Section 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Bray, Phys. Rev. A 49, 1066 (1994) and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    M. E. Rudd, Y.-K. Kim, D. H. Madison, and T. J. Gay, Rev. Mod. Phys. 64, 441 (1992), Appendix B.ADSCrossRefGoogle Scholar
  3. 3.
    Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    L. Vriens, in Case Studies in Atomic Physics, Vol. 1 (E. W. McDaniel and M. R. C. McDowell, eds.), North-Holland, Amsterdam (1969), p. 335.Google Scholar
  5. 5.
    H. Bethe, Ann. Physik 5, 325 (1930).ADSMATHCrossRefGoogle Scholar
  6. 6.
    N. F. Mott, Proc. R. Soc. London, Ser. A 126, 259 (1930).ADSMATHCrossRefGoogle Scholar
  7. 7.
    R. Muller-Fiedler, K. Jung, and H. Ehrhardt, J. Phys. B 19, 1211 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    M. E. Rudd, Phys. Rev. A 44, 1644 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Younger, J. Quant. Spectrosc. Radial Transfer 26, 329 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    M. B. Shah, D. S. Elliot, P. McCallion, and H. B. Gilbody, J. Phys. B 21, 2751 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    R. G. Montague, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B 17, 3295 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    C. B. Opal, E. C. Beaty, and W. K. Peterson, At. Data 4, 209 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    M. Gryzinski, Phys. Rev. 138, A305, A322, A336 (1965).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D. R. Schultz, L. Meng, and R. E. Olson, J. Phys. B 25, 4601 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    M. E. Rudd, K. W. Hollman, J. K. Lewis, D. L. Johnson, R. R. Porter, and E. L. Fagerquist, Phys. Rev. A 47, 1866 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    T. W. Shyn, Phys. Rev. A 45, 2951 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    R. R. Goruganthu and R. A. Bonham, Phys. Rev. 34, 103 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    T. W. Shyn, W. E. Sharp, and Y.-K. Kim, Phys. Rev. A 24, 79 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    R. R. Goruganthu, W. G. Wilson, and R. A. Bonham, Phys. Rev. A 35, 540 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    M. A. Bolorizadeh and M. E. Rudd, Phys. Rev. A 33, 882 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    M. E. Rudd and R. D. DuBois, Phys. Rev. A 16, 26 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    R. D. DuBois and M. E. Rudd, Phys. Rev. A 17, 843 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Yong-Ki Kim
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations