Low-Density Lipoproteins in Atherogenesis

  • Sampath Parthasarathy


It is well established that high levels of plasma cholesterol, particularly those associated with low-density lipoprotein (LDL), increase the risk of developing atherosclerosis. It is also clear that lowering plasma cholesterol levels can arrest or even reverse the progression of the disease [1,2].


Foam Cell Cholesterol Ester Scavenger Receptor Macrophage Scavenger Receptor Fatty Streak Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowering blood cholesterol to prevent heart disease. JAMA 1985, 253: 2080–2086.Google Scholar
  2. 2.
    Tyroler H: Lowering plasma cholesterol levels decreases risk of coronary heart disease: an overview of clinical trials. In Hypercholesterolemia and Atherosclerosis. Edited by Steinberg D, Olefsky JM. New York: Churchill Livingstone, 1987: 99–116.Google Scholar
  3. 3.
    Havel RJ: The role of liver in atherogenesis. Arteriosclerosis 1985, 2: 569–575.Google Scholar
  4. 4.
    Krauss RM: The tangled web of coronary risk factors. Am J Med 1990, 2 (suppl A): 36–41.Google Scholar
  5. 5.
    Krauss RM: Dense low density lipoproteins and coronary artery disease [review]. Am J Cardiol 1995, 75 (suppl B): 53–75.CrossRefGoogle Scholar
  6. 6.
    Veniant MM, Pierotti V, Newland D, et al.: Susceptibility to athero-sclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 1997, 100: 180–188.PubMedCrossRefGoogle Scholar
  7. 7.
    Pittman RC, Carew TE, Attie AD, et al.: Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal and in receptor-deficient mutant rabbits. J Biol Chem 1982, 257: 7994–8000.PubMedGoogle Scholar
  8. 8.
    Brown MS, Goldstein JL: A receptor-mediated pathway for choles-terol homeostasis. Science 1986, 232: 34 47.Google Scholar
  9. 9.
    Wang X, Briggs MR, Hua X, et al.: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem 1993, 268: 14497–14504.PubMedGoogle Scholar
  10. 10.
    Yang J, Sato R, Goldstein JL, et al.: Sterol-resistant transcription in Cho 61b caused by gene rearrangement that truncates SREBP-2. Genes Dev 1994, 8: 1910–1919.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishibashi S, Brown MS, Goldstein JL, et al.: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993, 92: 883–893.PubMedCrossRefGoogle Scholar
  12. 12.
    Scanu AM: Lipoprotein(a): its inheritance and molecular basis of its atherothrombotic role. Mol Cell Biochem 1992, 113: 127–131.PubMedCrossRefGoogle Scholar
  13. 13.
    Scanu AM, Fless GM: Lipoprotein(a): heterogeneity and biological relevance. J Clin Invest 1990, 85: 1709–1715.PubMedCrossRefGoogle Scholar
  14. 14.
    Gugliucci Creriche A, Stahl AJ: Glycation and oxidation of human low density lipoproteins reduces heparin binding and modifies charge. Scand J Clin Lab Invest 1993, 53: 125–132.CrossRefGoogle Scholar
  15. 15.
    Steinberg D, Parthasarathy S, Carew TE, et al.: Beyond cholesterol. Modifications of low-density lipoprotein that increase its athero-genicity. N Engl J Med 1989, 320: 915–924.PubMedCrossRefGoogle Scholar
  16. 16.
    Parthasarathy S: Modified Lipoproteins in the Pathogenesis of Atherosclerosis. Austin, TX: RG Landes Publishers, CRC Press Inc; 1994.Google Scholar
  17. 17.
    Steinbrecher UP: Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987, 262: 3603–3608.PubMedGoogle Scholar
  18. 18.
    Gerrity RG: The role of the monocyte in atherogenesis. Am J Pathol 1981, 103: 181–190.PubMedGoogle Scholar
  19. 19.
    Goldstein JL, Ho YK, Basu SK, et al.: Binding site on macrophages that mediates uptake and degradation of cetylated low density lipoproteins, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979, 76: 333–337.PubMedCrossRefGoogle Scholar
  20. 20.
    Haberland ME, Fogelman AM, Edwards PA: Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci USA 1982, 79: 1712–1716.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown MS, Goldstein JL: Atherosclerosis. Scavenging for receptors [news]. Nature 1990, 343: 508–509.PubMedCrossRefGoogle Scholar
  22. 22.
    Kodama T, Freeman M, Rohrer L, et al.: Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990, 343: 531–535.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi K, Naito M, Kodama T, et al.: Expression of macrophage scavenger receptors in various human tissues and atherosclerotic lesions. Clin Biochem 1992, 25: 365–368.PubMedCrossRefGoogle Scholar
  24. 24.
    Yla Herttuala S, Rosenfeld MR, Parthasarathy S, et al.: Gene expres-sion in macrophage-rich human atherosclerotic lesions. 15-lipoxy-genase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991, 87: 1146–1152.CrossRefGoogle Scholar
  25. 25.
    Sakaguchi H, Takeya M, Suzuki H, et al.: Role of macrophage scav-enger receptor in diet-induced atherosclerosis in mice. Lab Invest 1998, 78: 423–434.PubMedGoogle Scholar
  26. 26.
    Parthasarathy S, Steinberg D, Witztum JL: The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 1992, 43: 219–225.PubMedCrossRefGoogle Scholar
  27. 27.
    Cushing SD, Berliner JA, Valente AJ, et al.: Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990, 87: 5134–5138.PubMedCrossRefGoogle Scholar
  28. 28.
    Ku G, Thomas CE, Akeson AL, et al.: Induction of interleukin 1 ß expression from human peripheral blood monocyte-derived macrophages by 9-hydroxyoctadecadienoic acid. J Biol Chem 1992, 267: 14183–14188.PubMedGoogle Scholar
  29. 29.
    Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progres-sion of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987, 84: 7725–7729.PubMedCrossRefGoogle Scholar
  30. 30.
    Sparrow Cl’, Doebber TW, Olszewski J, et al.: Low density lipopro-tein is protected from oxidation and the progression of atheroscle-rosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’-diphenyl-phenylenediamine. J Clin Invest 1992, 89: 1885–1891.CrossRefGoogle Scholar
  31. 31.
    Verlangieri AJ, Bush MJ: Effects of d-alpha-tocopherol supplemen-tation on experimentally induced primate atherosclerosis. J Am Coll Nutr 1992, 11: 131–138.PubMedGoogle Scholar
  32. 32.
    Kita T, Nagano Y, Yokode M, et al.: Prevention of atherosclerotic progression in Watanabe rabbits by probucol. Am J Cardiol 1988, 62 (suppl B): 13–19.CrossRefGoogle Scholar
  33. 33.
    Gaziano JM, Manson JE, Buring JE, et al.: Dietary antioxidants and cardiovascular disease. Ann NY Acad Sci 1992, 669: 249–258.PubMedCrossRefGoogle Scholar
  34. 34.
    Gey KF, Puska P: Plasma vitamins E and A inversely correlated to mortality from ischemic heart disease in cross-cultural epidemi-ology. Ann NY Acad Sci 1989, 570: 268–282.Google Scholar
  35. 35.
    Stephens NG, Parsons A, Schofield PM, et al.: Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996, 347 (suppl A): 781–786.Google Scholar
  36. 36.
    Shern-Brewer R, Santanam N, Wetzstein C, et al.: Exercise and cardiovascular disease: a new perspective. Arteriosclerosis Thromb Vasc Biol 1998, 18: 1181–1187.CrossRefGoogle Scholar
  37. 37.
    Santanam N, Shern-Brewer R, McClatchey R, et al.: Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Research 1998, 39: 2111–2118.Google Scholar
  38. 38.
    Ramasamy S, Parthasarathy S, Harrison DG: Regulation of endothelial nitric oxide synthase gene expression by oxidized linoleic acid. J Lipid Res 1998, 39; 268–276.PubMedGoogle Scholar
  39. 39.
    Palinski WS, Miller E, Wiztum JL: Immunization of LDL receptor deficient rabbits with homologous malondialdehyde-modified reduces atherogenesis. Proc Natl Acad Sci USA 1995, 92: 821–825.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang C, Gu Z, Weng S, et al.: Structure of apolipoprotein B-100 of human low density proteins. Arteriosclerosis 1989, 9: 96–108.PubMedCrossRefGoogle Scholar
  41. 41.
    Briggs MR, Yokoyama C, Wang X, et al.: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J Biol Chem 1993, 268: 14490–14496.PubMedGoogle Scholar
  42. 42.
    Goldstein JL, Brown MS, Anderson RG, et al.: Receptor-mediated endocytosis: concepts emerging from the LDL receptor system [review]. Annu Rev Cell Biol 1985, 1: 1–39.PubMedCrossRefGoogle Scholar
  43. 43.
    Grundy SM: Cholesterol and Atherosclerosis: Diagnosis and Treatment. Philadelphia: JB Lippincott; 1990.Google Scholar
  44. 44.
    Austin MA, Hokanson JE: Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein(a) as risk factors for coronary heart disease [review]. Med Clin North Am 1994, 78: 99–115.PubMedGoogle Scholar
  45. 45.
    Callow MJ, Stoltzfus LJ, Lawn RM, et al.: Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice. Proc Natl Acad Sci USA 1994, 91: 2130–2134.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenfeld ME, Khoo JC, Miller E, et al.: Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. I Clin Invest 1991, 87: 90–99.CrossRefGoogle Scholar
  47. 47.
    Parthasarathy S, Santanam S, Auge N: Antioxidants and Low density Lipoprotein Oxidation. In Antioxidant Status, Diet, Nutrition, and Health. Edited by Papas A. Boca Raton, FL: CRC Press; 1999: 347–369.Google Scholar
  48. 48.
    Santanam N, Parthasarathy S: Paradoxical actions of antioxidants in the oxidation of low-density lipoprotein by peroxidases. J Clin Invest 1995, 95: 2594–2600.PubMedCrossRefGoogle Scholar
  49. 49.
    Esterbauer H, Striegl G, Puhl H, et al.: Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 1989, 6: 67–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Steinberg D: Metabolism of lipoproteins and their role in atheroge-nesis. Atheroscler Rev 1988, 18: 1–23.Google Scholar
  51. 51.
    Quinn MT, Parthasarathy S, Steinberg D, et al.: Oxidatively modi-fied low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987, 84: 2995–2998.PubMedCrossRefGoogle Scholar
  52. 52.
    Parthasarathy S, Rankin SM: Role of oxidized low density lipopro-tein in atherogenesis. Prog Lipid Res 1992, 31: 127–143.PubMedCrossRefGoogle Scholar
  53. 53.
    Palinski W, Rosenfeld ME, Yla Herttuala S, et al.: Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989, 86: 1372–1376.PubMedCrossRefGoogle Scholar
  54. 54.
    Rohrer L, Freeman M, Kodama T, et al.: Coiled-coil fibrous domains mediate ligand binding by scavenger receptor type II. Nature 1990, 343: 570–572.PubMedCrossRefGoogle Scholar
  55. 55.
    Fogelman AM, Haberland ME, Seager J, et al.: Factors regulating the activities of the low density lipoprotein receptor and the scav-enger receptor on human monocyte-macrophages. J Lipid Res 1981, 22: 1131–1141.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sampath Parthasarathy

There are no affiliations available

Personalised recommendations