Molecular Evolution of Ascomycete Fungi: Phylogeny and Conflict

  • J. W. Taylor
  • E. C. Swann
  • M. L. Berbee
Part of the NATO ASI Series book series (NSSA, volume 269)


Phylogenetic analysis of 18S ribosomal RNA genes puts Chytridiomycota, Zygomycota, Ascomycota, and Basidiomycota in the fungal kingdom. Fungi are part of the terminal eukaryotic radiation, and have animals plus choanogflagellates as closest relatives. Ascomycetes show an early radiation including Taphrina and Schizosaccharomyces, followed by a split leading to either budding yeasts or hyphal forms. Hyphal ascomycetes show a radiation of apothecial and loculoascomycete taxa together with the progenitors of two well-supported classes, Pyrenomycetes and Plectomycetes. Pneumocystis carinii provides an example of how conflicts between phylogenies inferred from morphological and molecular characters can be resolved. Molecular characters support its placement near the divergence of Ascomycota and Basidiomycota and its meiospore characters seem ascomycetous.


Fruiting Body Early Radiation Filamentous Ascomycete Zoosporic Fungus Nuclear Small Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. von Arx, J.A., 1973, Ostiolate and nonostiolate pyrenomycetes, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, sect. C, 76: 289–296.Google Scholar
  2. Bandoni, R.J., 1984, The Tremellales and Auriculariales: an alternative classification, Transactions of the Mycological Society of Japan 25: 489–530.Google Scholar
  3. Barr, D.J.S., 1981, The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi, BioSystems 14: 359–370.PubMedCrossRefGoogle Scholar
  4. Bartnicki-Garcia, S., 1970, Cell wall composition and other biochemical markers in fungal phylogeny, In: Phytochemical Phylogeny (J.P. Harborne, ed.): 81–104, Academic Press, New York.Google Scholar
  5. Berbee, M.L., and J.W. Taylor, 1992a, Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence, Molecular Biology and Evolution 9: 278–284.PubMedGoogle Scholar
  6. Berbee, M.L., and J.W. Taylor, 1992b, Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data, BioSystems 28: 117–125.PubMedCrossRefGoogle Scholar
  7. Berbee, M.L., and J.W. Taylor, 1992c, Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence, Molecular Phylogenetics and Evolution 1: 59–71.PubMedCrossRefGoogle Scholar
  8. Berbee, M.L., and J.W. Taylor, 1993, Dating the evolutionary radiations of the true fungi, Canadian Journal of Botany 71: 1114–1127.CrossRefGoogle Scholar
  9. Bessey, E.A., 1950, Morphology and Taxonomy of Fungi, Blakiston, Philadelphia.Google Scholar
  10. Bhattacharya, D., L. Medlin, P.O. Wainright, E.V. Ariztia, C. Bibeau, S.K. Stickel, and M.L. Sogin, 1992, Algae containing chlorophylls a + c are paraphyletic: molecular evolutionary analysis of the chromophyta, Evolution 46: 1801–1817.CrossRefGoogle Scholar
  11. Bowman, B.H., J.W. Taylor, A.G. Brownlee, J. Lee, S-D. Lu, and T.J. White, 1992a, Molecular evolution of the fungi: relationship of the basidiomycetes, ascomycetes, and chytridiomycetes, Molecular Biology and Evolution 9: 285–296.PubMedGoogle Scholar
  12. Bowman, B., J.W. Taylor, and T.J. White. 1992b, Molecular evolution of the fungi: human pathogens, Molecular Biology and Evolution 9: 893–904.PubMedGoogle Scholar
  13. Bracker, C.E. 1968, The ultrastructure and development of sporangia in Gilbertella persicaria, Mycologia 60: 1016–1067.PubMedCrossRefGoogle Scholar
  14. Bruns, T.D., T.J. White, and J.W. Taylor, 1991, Fungal molecular systematics, Annual Review of Ecology and Systematics 22: 525–564.CrossRefGoogle Scholar
  15. Bruns, T.D., R. Vilgalys, S.M. Barns, D. Gonzalez, D.S. Hibbett, D.J. Lane, L. Simon, S. Stickel, T.M. Szaro, W.G. Weisburg, and M.L. Sogin, 1992, Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences, Molecular Phylogenetics and Evolution 1: 231–241.PubMedCrossRefGoogle Scholar
  16. Cain, R.F., 1972, Evolution of the fungi, Mycologia 64: 1–14.CrossRefGoogle Scholar
  17. Carroll, G.C., 1967, The ultrastructure of ascospore delimitation of Saccobolus kerverni, Journal of Cell Biology 33: 218–224.PubMedCrossRefGoogle Scholar
  18. Cavalier-Smith, T., 1987, The origin of Fungi and Pseudofungi, In: Evolutionary Biology of the Fungi (A.D.M. Rayner, C.M. Brasier, and D. Moore, eds): 339–353, Cambridge University Press, Cambridge.Google Scholar
  19. Cushion, M.T., J.R. Stringer, and P.D. Walzer, 1991, Cellular and molecular biology of Pneumocystis carinii, International Review of Cytology 131: 59–107.PubMedGoogle Scholar
  20. Dodge, B.O., 1935, The mechanics of sexual reproduction in Neurospora, Mycologia 27: 418–438.CrossRefGoogle Scholar
  21. Edman, J.C., J.A. Kovacs, H. Mansur, D.V. Santi, H.J. Elwood, and M.L. Sogin, 1988, Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi, Nature 334: 519–522.PubMedCrossRefGoogle Scholar
  22. Eriksson, O.[E.], 1982, Outline of the ascomycetes — 1982, Mycotaxon 15: 203–248.Google Scholar
  23. Fell, J.W., I.L. Hunter, and A.S. Tallman, 1973, Marine basidiomycetous yeasts (Rhodotorula spp. n.) with tetrapolar and multiple allelic bipolar mating systems, Canadian Journal of Microbiology 19: 643–657.PubMedCrossRefGoogle Scholar
  24. Fell, J.W., A. Statzell-Tallman, M.J. Lutz, and C.P. Kurtzman, 1992, Partial rRNA sequences in marine yeasts: a model for identification of marine eukaryotes, Molecular Marine Biology and Biotechnology 1: 175–186.PubMedGoogle Scholar
  25. Felsenstein, J., 1985, Confidence limits on phytogenies: an approach using the bootstrap, Evolution 39: 783–791.CrossRefGoogle Scholar
  26. Felsenstein, J., 1991. Phylip 3.4, Department of Genetics, University of Washington, Seattle.Google Scholar
  27. Forsburg, S.L., and P. Nurse, 1991, Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, Annual Review of Cell Biology 7: 227–256.PubMedCrossRefGoogle Scholar
  28. Förster, H., M.D. Coffey, H. Elwood, and M.L. Sogin, 1990, Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution, Mycologia 82: 306–312.CrossRefGoogle Scholar
  29. Gargas, A., 1992, Phylogeny of discomycetes and early radiations of the filamentous ascomycetes inferred from 18S rDNA sequence data. PhD Thesis, University of California, USA.Google Scholar
  30. Gottschalk, M., and P.A. Blanz, 1985, Untersuchungen an 5S ribosomalen robonukleinsauren als beitrag zur Klarung von Systematik und phylogenie der Basidiomyceten, Zeitschrift für Mykologie 51: 205–243.Google Scholar
  31. Hasegawa, M., T. Hashimoto, J. Adachi, N. Iwabe, and T. Miyata, 1993, Early branchings in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data, Journal of Molecular Evolution 36: 380–388.PubMedCrossRefGoogle Scholar
  32. Hasegawa, M., Y. Iida, T. Yano, F. Takaiwa, and M. Iwabuchi, 1985, Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences, Journal of Molecular Evolution 22: 32–38.PubMedCrossRefGoogle Scholar
  33. Hawksworth, D.L., B.C. Sutton, and G.C. Ainsworth, 1983, Ainsworth & Bisby’s Dictionary of the Fungi. 7th edition, Commonwealth Agricultural Bureaux, Slough.Google Scholar
  34. Hendriks, L., A. Goris, Y. van de Peer, J.-M. Neefs, M. Vancanneyt, K. Kersters, J.-F. Berny, G.L. Hennebert, R. R. De Wächter, 1992, Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences, Systematic and Applied Microbiology 15: 98–104.CrossRefGoogle Scholar
  35. Hennig, W., 1966, Phylogenetic Systematics, University of Illinois Press, Urbana.Google Scholar
  36. Hillis, D.M., and M.T. Dixon, 1991, Ribosomal DNA: molecular evolution and phylogenetic inference, Quarterly Review of Biology 66: 411–453.PubMedCrossRefGoogle Scholar
  37. Hori, H., and S. Osawa, 1987, Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences, Molecular Biology and Evolution 4: 445–472.PubMedGoogle Scholar
  38. Illingworth, C.A., J.H. Andrews, C. Bibeau, and M.L. Sogin, 1991, Phylogenetic placement of Athelia bombacina, Aureobasidium pullulans and Colletotrichum gloeosporoides inferred from sequence comparisons of small-subunit ribosomal RNAs, Experimental Mycology 15: 65–75.CrossRefGoogle Scholar
  39. Kreger-van Rij, N.J.W., and M. Veenhuis, 1971, A comparative study of the cell wall structure of basidiomycetous and related yeasts, Journal of Genneral Microbiology 68: 87–95.CrossRefGoogle Scholar
  40. Luttrell, E.S., 1955, The ascostromatic ascomycetes, Mycologia 47: 511–532.CrossRefGoogle Scholar
  41. Malloch, D. 1981, The plectomycete centrum, In: Ascomycete Systematics: The Luttrellian Concept (D.R. Reynolds, ed.): 73–91, Springer, New York.CrossRefGoogle Scholar
  42. Mankin, A.S., K.G. Skryabin, and P.M. Rubtsov, 1986, Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA, Gene 44: 143.PubMedCrossRefGoogle Scholar
  43. Margulis, L., and K. V. Schwartz, 1988, Five Kingdoms, W.H. Freeman, New York.Google Scholar
  44. Matsumoto, Y., and Y. Yoshida, 1984, Sporogony in Pneumocystis carinii: synaptonemal complexes and meiotic nuclear divisions observed in precysts, Journal of Protozoology 31: 420–428.PubMedCrossRefGoogle Scholar
  45. Moens, P.B., 1971, Fine structure of ascospore development in the yeast Saccharomyces cerevisiae, Canadian Journal of Microbiology 17: 507–510.PubMedCrossRefGoogle Scholar
  46. Nishida, H., and J. Sugiyama, 1992, Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi, Molecular Biology and Evolution 10: 431–436.Google Scholar
  47. Oberwinkler, F., R. Bandoni, P. Blanz, and L. Kisimova-Horovitz, 1983, Cystofilobasidium: a new genus in the Filobasidiaceae, Systematic and Applied Microbiology 4: 114–122.PubMedCrossRefGoogle Scholar
  48. Radford, A., 1993, A fungal phylogeny based upon orotidine 5′-monophosphate decarboxylase, Journal of Molecular Evolution 36: 389–395.PubMedCrossRefGoogle Scholar
  49. Richardson, J.D., S.F. Queener, M. Bartlett, and J. Smith, 1989, Binary fission of Pneumocystis carinii trophozoites grown in vitro, Journal of Protozoology 36: 27S–29S.PubMedGoogle Scholar
  50. Savile, D.B.O., 1955, A phylogeny of the basidiomycetes, Canadian Journal of Botany 33: 60–104.CrossRefGoogle Scholar
  51. Sigler, L., and J.W. Carmichael, 1976, Taxonomy of Malbranchea and some other hyphomycetes with arthroconidia, Mycotaxon 4: 349–488.Google Scholar
  52. Smith, T.L., 1989, Disparate evolution of yeasts and filamentuous fungi indicated by phylogentic analysis of glyceraldehyde-3-phosphate dehyrogenase genes, Proceedings of the National Academy of Sciences of the United States of America 86: 7063–7066.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Sogin, M.L., 1989, Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs, American Zoologist 29: 487–499.Google Scholar
  54. Sogin, M.L., J.H. Gunderson, H.J. Elwood, R.A. Alonso, and D.A. Peattie, 1989, Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia, Science 243: 15–11.CrossRefGoogle Scholar
  55. Sogin, M.L., K. Miotto, and L. Miller, 1986, Primary structure of the Neurospora crassa small subunit ribosomal RNA coding region, Nucleic Acids Research 23: 9540.CrossRefGoogle Scholar
  56. Spatafora, J.W., and M. Blackwell, 1992, Monophyly and higher level systematics of ascomycetes, Inoculum 43 (1,2,3): 50.Google Scholar
  57. Spatafora, J.W., R. Vilgalys, and T.G. Mitchell, 1993, Phylogenetic placement of the “black yeasts” (Ascomycota), Inoculum 44 (2): 57.Google Scholar
  58. Stringer, S.L., K. Hudson, M.A. Blase, P.D. Walzer, M.T. Cushion, and J.R. Stringer, 1989, Sequence from ribosomal RNA of Pneumocystis carinii compared to those of four fungi suggests an ascomycetous affinity, Journal of Protozoology 36: 14S–16S.PubMedGoogle Scholar
  59. Swofford, D.L., 1993, PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1, Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  60. Tanaka, K., and A. Hirata, 1982, Ascospore development in the fission yeasts S. pombe and S. japonicus, Journal of Cell Science 56: 263–279.PubMedGoogle Scholar
  61. Taylor, J.W., B. Bowman, M.L. Berbee, and T.J. White, 1993, Fungal model organisms: phylogenetics of Saccharomyces, Aspergillus and Neurospora, Systematic Biology 42: 440–457.CrossRefGoogle Scholar
  62. Taylor, J.W., and B.H. Bowman, 1993, Pneumocystis carinii and the ustomycetous red yeast fungi, Molecular Microbiology 8: 425–426.PubMedCrossRefGoogle Scholar
  63. Taylor, J.W., and M.S. Fuller, 1981, The golgi apparatus, zoosporogenesis, and development of the zoospore discharge apparatus of Chytridium confervae. Experimental Mycology 5: 35–59.CrossRefGoogle Scholar
  64. Taylor, J.W., and K. Wells, 1979, A light and electron microscopic study of mitosis in Bullera alba and the histochemistry of some cytoplasmic substances, Protoplasma 98: 31–62.CrossRefGoogle Scholar
  65. Tehler, A., 1988, A cladistic outline of the Eumycota, Cladistics 4: 227–277.CrossRefGoogle Scholar
  66. Tehler, A., 1989, A new approach to the phylogeny of Euascornycetes with a cladistic outline of Arthoniales focussing on Roccellaceae, Canadian Journal of Botany 68: 2458–2492.Google Scholar
  67. van de Peer, Y., L. Hendriks, A. Goris, J.-M. Neefs, M. Vancanneyt, K. Kersters, J.-F. Beray, G.L. Hennebert, and R. De Wächter, 1992, Evolution of basidiomycetous yeasts as deduced from small ribosome subunit RNA sequences, Systematic and Applied Microbiology 15: 250–258.CrossRefGoogle Scholar
  68. Vavra, J., and K. Kucera, 1970, Pneumocystis carinii Delanoë, its ultrastructure and ultrastructural affinities, Journal of Protozoology 17:463–483.PubMedCrossRefGoogle Scholar
  69. Vogel, H.J., 1964, Distribution of lysine pathways among fungi: evolutionary implications, American Naturalist 98: 435–446.CrossRefGoogle Scholar
  70. Wainright, P.O., G. Hinkle, M.L. Sogin, and S.K. Stickel, 1993, Monophyletic origins of the metazoa: an evolutionary link with fungi, Science 260: 340–342.PubMedCrossRefGoogle Scholar
  71. Wakefield, A.E., J.M. Hopkin, P.D. Bridge, and D.L. Hawksworth, 1993, Pneumocystis carinii and the ustomycetous red yeast fungi, Molecular Microbiology 8: 426–427.CrossRefGoogle Scholar
  72. Wakefield, A.E., S.E. Peters, B. Suneale, P.D. Bridge, G.S. Hall, D.L. Hawksworth, L.A. Guiver, A.G. Allen, and J.M. Hopkin, 1992, Pneumocystis carinii shows DNA homology with the ustomycetous red yeast fungi, Molecular Microbiology 6: 1903–1911.PubMedCrossRefGoogle Scholar
  73. Walker, W.F., and W.F. Doolittle, 1982, Redividing the basidiomycetes on the basis of 5S rRNA sequences, Nature 299: 723–724.PubMedCrossRefGoogle Scholar
  74. Wells, K., 1972, Light and electron microscopic studies on Ascobolus stercorarius. II. Ascus and ascospore ontogeny, University of California Publications in Botany 62: 1–93.Google Scholar
  75. White, T.J., T.D. Bruns, S. Lee, and J.W. Taylor, 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In: PCR Protocols (M. Innis, D. Gelfand, J. Sninsky and T. White, eds): 315–322, Academic Press, San Diego.Google Scholar
  76. Whittaker, R.H., 1969, New concepts of kingdoms of organisms, Science 163: 150–160.PubMedCrossRefGoogle Scholar
  77. Woese, C.R., O. Kandier, and M.L. Wheelis, 1990, Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya, Proceedings of the National Academy of Sciences, United States of America 87: 4576–4579.CrossRefGoogle Scholar
  78. Yoshida, Y., 1989, Ultrastructural studies of Pneumocystis carinii, Journal of Protozoology 36: 53–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. W. Taylor
    • 1
  • E. C. Swann
    • 2
  • M. L. Berbee
    • 3
  1. 1.Department of Plant BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Plant BiologyUniversity of MinnesotaSt PaulUSA
  3. 3.Department of BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations