Decomposition of Toric Morphisms

  • Miles Reid
Part of the Progress in Mathematics book series (PM, volume 36)

Abstract

(0.1) This paper applies the ideas of Mori theory [4] to toric varieties. Let X be a projective tonic variety (over any field) constructed from a simplicial fan F. The cone of effective 1-cycles NE(X) is polyhedral (1.7), spanned by the 1-strata l w X; the condition that a 1-stratum l w gives an extremal ray R = Q + l w of NE(X) has a nice interpretation (2.10) in terms of the geometry of F around the wall w.

Keywords

Hull Alphen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33: 2(1978), 85-134 = Russian Math Surveys 33: 2 (1978), 97 - 154.MATHCrossRefGoogle Scholar
  2. [2]
    V. Danilov, Birational geometry of tonic 3-folds,Izv. Akad. Nauk SSSR ser. Mat., 46 (1982), 971-982 = math USSR Izvestija, to appear.Google Scholar
  3. [3]
    T. Oda, Torus embeddings and applications, Tata Inst. Lect. Notes, Springer 1978.Google Scholar
  4. [4]
    S. Mori, Three-folds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), 133 - 176.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Reid, Canonical 3-folds, in Proc. Journées de Géom. Alg. Angers, Ed. A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273 - 310.Google Scholar
  6. [6]
    M. Reid, Minimal models of canonical 3-folds, to appear in Advanced Studies in Pure Math. 1, eds. S. Iitaka and H. Morikawa, Kinokuniya and North-Holland, 1982.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Miles Reid
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations