Analysis of Rotavirus Proteins by Gene Cloning, Mutagenesis, and Expression

  • G. W. Both
  • S. C. Stirzaker
  • C. C. Bergmann
  • M. E. Andrew
  • D. B. Boyle
  • A. R. Bellamy
Part of the Applied Virology Research book series (AVIR, volume 2)


Rotaviruses have been isolated from most mammalian species and in many cases are a cause of diarrhea in the young (Kapikian and Chanock, 1985). In domestic animals such as cattle and pigs, the economic loss is often significant (Holmes, 1983). Rotaviruses were discovered in humans in 1973 (Bishop et al., 1973) and in recent times have been intensively studied as their importance as animal and human pathogens has become apparent. At present no approved human vaccine is available, although animal rotavirus isolates and reassortants derived from them are undergoing clinical trials (Vesikari et al., 1988; Midthun et al., 1985). Such live heterologous or reassortant rotaviruses may provide a first-generation rotavirus vaccine. The aims of our research are to characterize rotaviruses in molecular terms, in order to develop an understanding of the structure and function of key viral proteins in the belief that a better understanding of the molecular features of these proteins might lead to the development of second-generation recombinant vaccines. Although the general feasibility of developing recombinant rotavirus vaccines has yet to be established, this might occur through the development of engineered forms of subunit viral proteins; alternatively, procedures by which novel, engineered viral genes could be incorporated by reassortment into live viral vaccines might be developed. Progress in either of these areas requires that we develop a better understanding of the molecular biology of both rotaviruses in general and rotavirus antigens in particular.


Endoplasmic Reticulum Signal Peptide Endoplasmic Reticulum Membrane Hydrophobic Domain Single Glycosylation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, M., Boyle, D. B., Coupar, B. E. H., Whitfeld, P. L., Both, G. W., and Bellamy, A. R. (1987). J. Virol. 61, 1054–1060.PubMedGoogle Scholar
  2. Arias, C. F., Lopez, S., Bell, J. R., and Strauss, J. H. (1984). J. Virol. 50, 657–661.PubMedGoogle Scholar
  3. Au, K-S., Chan, W-K., and Estes, M. K. (1989). In UCLA Symposium on Cell Biology of Viral Entry, Replication and Pathogenesis (R. Compans, A. Helenius, M. Oldstone, eds.), pp. 257–267, Alan Liss, New York.Google Scholar
  4. Bachrach, H. L., Moore, D. M., McKercher, P. D., and Polatnick, J. (1975). J. Immunol. 115, 1636–1641. Bergmann, C. C., Maass, D., Poruchynsky, M. S., Atkinson, P. H., and Bellamy, A. R. (1989). EMBO J. 8, 1695–1703.Google Scholar
  5. Bishop, R. F., Davidson, G. P., Holmes, I. H., and Ruck, B. J. (1973). Lancet, 2, 1281–1283.PubMedCrossRefGoogle Scholar
  6. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987). Nature 329, 506–512.PubMedCrossRefGoogle Scholar
  7. Both, G. W. (1988). In RNA Genetics (E. Domingo, J. J. Holland, and P. Ahlquist, eds.), pp. 171–193, CRC Press, Boca Raton, FL.Google Scholar
  8. Both, G. W., Siegman, L. J., Bellamy, A. R., and Atkinson, P. H. (1983). J. Viro!. 48, 335–339. Chan, W-K., Au, K-S., and Estes, M. K. (1988). Virology 164, 435–442.Google Scholar
  9. Crowl, R., Seamans, C., Lomedico, P., and McAndrew, S. (1985). Gene 38, 31–38.PubMedCrossRefGoogle Scholar
  10. Dyall-Smith, M. L., Lazdins, I., Tregear, G. W., and Holmes, I. H. (1986). Proc. Natl. Acad. Sci. USA 83, 3465–3468.PubMedCrossRefGoogle Scholar
  11. Ericson, B. L., Graham, D. Y., Mason, B. B., Hansenn, H., and Estes, M. K. (1983). Virology 127, 320–332. Estes, M. K., Palmer, E. L., and Obijeski, J. F. (1983). Curr. Topics Microbiol. Irrununol. 105, 123–184. Estes, M. K., Crawford, S. E., Penaranda, M. E., Petrie, B. L., Burns, J. W., Chan, W., Ericson, B.. SmithGoogle Scholar
  12. G. W., and Summers, M. D. (1987). J. Viro!. 61, 1488–1494.Google Scholar
  13. Farquhar, M. G. (1985). Annu. Rev. Cell Biol. I,447–488.Google Scholar
  14. Gething, M-J., and Sambrook, J. (1981). Nature 293, 620–625.PubMedCrossRefGoogle Scholar
  15. Gething, M-J., McCammon, K., and Sambrook, J. (1986). Cell 46, 939–950.Google Scholar
  16. Gunn, P. G., Sato, F., Powell, K. F. H., Bellamy, A. R., Napier, J. R., Harding, D. R. K., Hancock, W. S. Siegman, L. J., and Both, G. W. (1985). J. Virol. 54, 791–797.PubMedGoogle Scholar
  17. Hogle, J. M., Chow, M., and Filman, D. J., (1985). Science 229, 1358–1365.PubMedCrossRefGoogle Scholar
  18. Holmes, I. H. (1983). In The Reoviridae (W. K. Joklik, cd.), pp. 359–423, Plenum Press, New York. Kabccnell, A. K., and Atkinson, P. A. (1985). J. Cell. Biol. 101, 1270–1280.Google Scholar
  19. Kabcenell, A. K., Poruchynsky, M. S., Bellamy. A. R., Greenberg, H. B., and Atkinson, P. A. (1988). J. Viro!. 62, 2929–2941.Google Scholar
  20. Kapikian, A. Z., and Chanock, R. M. (1985). In Virology (B. N. Fields, ed.), pp. 863–906, Raven Press, New York.Google Scholar
  21. Kuroda, K., Hauser, C., Rott, R., Klenk, H., and Doerfler, W. (1986). EMBO J. 5, 1359–1365. Joklik, W. K. (1983). In The Reoviridae (W. K. Joklik, ed.), Chapter 1, Plenum Press, New York. Langford, C. J., Edwards, S. J., Smith, G. L., Mitchell. G. F., Moss, B., Kemp, D. J., and Anders. R. F.(1986)Mol. Cell. Biol. 6, 3191–3199.Google Scholar
  22. Liu, M., Offit, P. A., and Estes, M. K. (1988). Virology 163, 26–32.PubMedCrossRefGoogle Scholar
  23. Maryanski, J. L., Pala, P., Corradin, G., Jordan, B. R., and Cerottini, J-C. (1986). Nature 324, 578–579. Matsui, S. M.. Mackow, E., and Greenberg, H. B. (1989). In Advances in Virus Research (K. MaramoroschGoogle Scholar
  24. F. A. Murphy, and A. J. Shatkin, eds.), pp. 181–214, Academic Press, San Diego, CA.Google Scholar
  25. Matsuura, Y., Possee, R. D., Overton, H. A., and Bishop, D. H. L. (1987). J. Gen. Viro!. 68, 1233–1250. Metcalf, P. ( 1979 ). Ph.D. thesis, University of Auckland, New Zealand.Google Scholar
  26. Midthun, K., Greenberg. H. B., Hoshino, Y., Kapikian, A. Z., Wyatt, R. G.. and Chanock, R. M. (1985). J. Viro!. 53, 949–954.Google Scholar
  27. Mitchell, D. B., and Both, G. W. (1988). Nucl. Acids Res. 16, 6244–6244.PubMedCrossRefGoogle Scholar
  28. Petrie, B. L., Greenberg, H. B., Graham, D. Y., and Estes, M. K. (1984). Virus Res. 1, 133–152. Pfeffer, S. R., and Rothman, J. E. (1987). Annu. Rev. Biochern. 56, 829–852.Google Scholar
  29. Poruchynsky, M. S., Tyndall, C., Both, G. W., Sato, F., Bellamy, A. R., and Atkinson, P. A. (1985). J. Cell Biol. 101, 2199–2209.PubMedCrossRefGoogle Scholar
  30. Prasad, B. V. V., Wang, G. J., Clerx, J. P. M., and Chiu, W. (1988). J. Mol. Biol. 199, 269–275. Reddy, D. A., Greenberg, H. B., and Bellamy, A. R. (1989). Nucl. Acids Res. 17, 449.Google Scholar
  31. Roseto, A., Escaig, J., Delain, E., Cohen, J., and Scherrer, R. (1979). Virology 98, 471–475.PubMedCrossRefGoogle Scholar
  32. Rossman, M. G., Arnold, E., Erikson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E.Google Scholar
  33. Kamer, G., Luo, M., Mosser, A. G., Reuckert, R. R., Herry, B., and Vriend, G. (1985) Nature 317, 145–153.Google Scholar
  34. Sheridan, J. F., Smith, C. C., Manak, M. M., and Aurelian, L. (1984). J. Infect. Dis. 149, 434–438. Stirzaker, S. C., Whitfeld, P. L., Christie, D. L., Bellamy, A. R., and Both, G. W. (1987). J. Cell Biol. 105, 2897–2903.Google Scholar
  35. Summers, M. D., and Smith. G. E. (1987). Tex. Agric. Exp. Stn. (Bull.) 1555, 1–48 appendix.Google Scholar
  36. Taniguchi, K., Hoshino, Y., Nishikawa, K., Green, K. Y., Maloy, W. L., Kapikian, A. Z., Chanock, R. M., and Gorziglia, M. (1988). J. Viro!. 62, 1870–1874.Google Scholar
  37. Townsend, A. R. M., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D., and McMichael, A. J. (1986). Cell 44, 959–968.PubMedCrossRefGoogle Scholar
  38. Varghese, J. N.. Laver, W. G., and Colman, P. M. (1983). Nature 303, 35–40.PubMedCrossRefGoogle Scholar
  39. Vesikari, T., Isolauri, E., Ruuska, T., Delem, A., and Andre, F. E. (1988). In Applied Virology Research, vol. 1 (E. Kurstak, R. G. Marusyk, F. A. Murphy, and M. H. V. Van Regenmortel, eds.), pp. 55–62, Plenum Press, New York.Google Scholar
  40. von Heijne, G. (1986). Nucl. Acids Res. 14, 4683–4690.CrossRefGoogle Scholar
  41. Ward, C. W., and Dopheide, T. A. (1980). Virology 103, 37–53.PubMedCrossRefGoogle Scholar
  42. Whitfeld, P. L., Tyndall, C., Stirzaker, S. C., Bellamy, A. R., and Both, G. W. (1987). Mol. Cell. Biol. 7, 2491–2497.PubMedGoogle Scholar
  43. Wilson, I. A., Skehel, J. J., and Wiley, D. C. (1981). Nature 289, 366–373.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. W. Both
    • 1
  • S. C. Stirzaker
    • 1
  • C. C. Bergmann
    • 2
  • M. E. Andrew
    • 3
  • D. B. Boyle
    • 3
  • A. R. Bellamy
    • 2
  1. 1.CSIRO Division of BiotechnologyLaboratory for Molecular BiologyNorth RydeAustralia
  2. 2.Department of Cellular and Molecular BiologyUniversity of AucklandAucklandNew Zealand
  3. 3.CSIRO Australian Animal Health LaboratoryGeelongAustralia

Personalised recommendations