Advertisement

New Generation of Rabies Vaccine

Vaccinia—Rabies Glycoprotein Recombinant Virus
  • T. J. Wiktor
  • M. P. Kieny
  • R. Lathe
Chapter
Part of the Applied Virology Research book series (AOTP, volume 1)

Abstract

Rabies is a disease of major significance to human and veterinary medicine. Derivatives of the vaccine developed by Pasteur and associates 100 years ago (1885) are still in use in many parts of the world. During the past two decades considerable progress has been made in improving the efficiency and safety of rabies vaccines through the use of tissue-culture techniques. The Wistar Institute human diploid rabies vaccine, introduced in 1970, is now in general use in the United States and Western Europe. In spite of having a nearly perfect record of safety and efficacy, this vaccine is too costly for extensive use in many of the developing countries, particularly those where rabies vaccine is most needed. Furthermore, rabies is unique in that vaccine treatment is generally applied, in humans, after exposure to the virus: although postexposure vaccination is effective, the precise mechanism of its action is not yet clearly understood.

Keywords

Vaccinia Virus Thymidine Kinase Recombinant Virus Rabies Virus Rabies Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anilionis, A., Wunner, W. H., and Curtis, P. J. (1981). Nature (London) 294, 275–278.CrossRefGoogle Scholar
  2. Baxby, D. (1981). Jenner’s Smallpox Vaccine. Heinemann Educational Books, London.Google Scholar
  3. Blancou, J., Kieny, M. P., Lathe, R., Lecocq, J. P., Pastoret, P. P., Soulcbot, J. P., and Desmettre, P. (1986). Nature 322, 373–375.PubMedCrossRefGoogle Scholar
  4. Burrage, T. G., Tignor, G. H., and Smith, A. L. (1985). Virus Res. 2, 273–279.PubMedCrossRefGoogle Scholar
  5. Cochran, M. A., Puckett, C., and Moss, B. (1985). J. Virol. 54, 30–37.PubMedGoogle Scholar
  6. Dales, S., and Pogo, B. G. T. (1981). Biology of Poxviruses, Virology Monograph 18 (D. W. Kingsbury and H. Zwihausen, eds.), Springer-Verlag, New York.CrossRefGoogle Scholar
  7. Dietzschold, B., Wiktor, T. J., MacFarlan, R., and Varrichio, A. (1982). J. Virol. 44, 595–602.PubMedGoogle Scholar
  8. Dietzschold, B., Wiktor, T. J., Wunner, W. H., and Varrichio, A. (1983). Virology 24, 330–337.CrossRefGoogle Scholar
  9. Drillin, R., and Spehner, D. (1983). Virology 131, 385–393.CrossRefGoogle Scholar
  10. Geshelin, P., and Berns, K. I. (1974). J. Mol. Biol. 88, 785–796.PubMedCrossRefGoogle Scholar
  11. Lathe, R., Kieny, M. P., Schmitt, D., Curtis, P., and Lecocq, J. P. (1984). J. Mol. Appl. Genet. 2, 331–342.PubMedGoogle Scholar
  12. Kieny, M. P., Lathe, R., Drillien, R., Spehner, D., Skory, S., Schmitt, D., Wiktor, T., Koprowski, H., and Lecocq, J. P. (1984). Nature (Lond.) 312, 163–166.CrossRefGoogle Scholar
  13. Kieny, M. P., Desmettre, P., Soulebot, J. P., and Lathe, R. (1987). Prog. Vet. Microbiol. Immunol. 3, 73–111.PubMedGoogle Scholar
  14. Mackett, M., and Achard, L. G. (1979). J. Gen. Virol. 45, 689–701.CrossRefGoogle Scholar
  15. Panicali, D., and Paoletti, E. (1982). Proc. Natl. Acad. Sci. USA 79, 4927–4931.PubMedCrossRefGoogle Scholar
  16. Pasteur, L. (1885). C.R. Acad. Sci. 101, 765–772.Google Scholar
  17. Rupprecht, C. E., Wiktor, T. J., Johnston, D. H., Hamir, A. N., Dietzschold, B., Wunner, W. H., Glickman, L. T., and Koprowski, H. (1986). Proc. Natl. Acad. Sci. USA 83, 7947–7950.PubMedCrossRefGoogle Scholar
  18. Smith, G. L., and Moss, B. (1984). Bioessays 1, 120–124.CrossRefGoogle Scholar
  19. Smith, G. L., Mackett, M., and Moss, B. (1983). Nature (Lond.) 302, 490–495.CrossRefGoogle Scholar
  20. Smith, G. L., Mackett, M., and Moss, B. (1984). Biotech. Genet. Eng. Rev. 2, 383–407.CrossRefGoogle Scholar
  21. Weir, J. P., and Moss, B. (1983). J. Virol. 46, 530–537.PubMedGoogle Scholar
  22. Wiktor, T. J. (1978). Dev. Biol. Stand. 40, 255–264.PubMedGoogle Scholar
  23. Wiktor, T. J., Gyorgy, E., Schlumberger, H. D., Sokol, F., and Koprowski, H. (1973). J. Immunol. 110, 269–276.PubMedGoogle Scholar
  24. Wiktor, T. J., Doherty, P. C., and Koprowski, H. (1977). J. Exp. Med. 145, 1600–1617.CrossRefGoogle Scholar
  25. Wiktor, T. J., MacFarlan, R. I., Reagan, K. J., Dietzschold, B., Curtis, P. J., Wunner, W. H., Kieny, M. P., Lathe, R., Lecocq, J. P., Mackett, M., Moss, B., and Koprowski, H. (1984). Proc. Natl. Acad. Sci. USA 81, 7194–7198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • T. J. Wiktor
    • 1
  • M. P. Kieny
    • 2
  • R. Lathe
    • 3
  1. 1.The Wistar InstitutePhiladelphiaUSA
  2. 2.Transgene S. A.StrasbourgFrance
  3. 3.LGME-CNRS and U184-INSERMStrasbourgFrance

Personalised recommendations