Advertisement

Carrier-Mediated Antiviral Therapy

  • M. Kende
  • D. J. Gangemi
  • W. Lange
  • D. A. Eppstein
  • J. Kreuter
  • P. G. Canonico
Chapter
Part of the Applied Virology Research book series (AOTP, volume 1)

Abstract

Drug-delivery systems that appear to be suitable for antiviral compounds can be grouped in three major categories (Table 1). Accordingly, when a drug is encapsulated in a carrier or attached to macromolecules, endocytosis is the only mode of entry. Two types of endocytosis, phagocytosis and pinocytosis, constitute the physiologic basis of the delivery systems. In phagocytosis, particulate materials are transported in large intracellular vesicles. The drug is encapsulated in an insoluble carrier engulfed by phagocytic cells and is released after enzymatic breakdown of the carrier. In pinocytosis, soluble materials are transported in small vesicles. The linkage between drug and soluble carrier is stable in the plasma but is susceptible to hydrolysis by lysosomal enzymes. The third is an in-between type. The substance, the drug or the biological is encapsulated in a polymeric or liposomal carrier that, because of its location or size, is not taken up by the cells. Because of diffusion of the substance and bioerosion of the carrier, the biological or the drug is constantly released from the carrier into the circulation and eventually enters the cell via active or passive transport.

Keywords

Influenza Virus Herpes Simplex Virus Type Influenza Viral Infection Sheep Erythrocyte Rift Valley Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alving, C. R. (1983). Pharmacol. Ther. 22, 407–424.PubMedCrossRefGoogle Scholar
  2. Alving, C. R., Steck, E. A., Chapman, W. L., Jr., Waits, V. B., Hendricks, L. D., Swartz, G. M., Jr., and Hanson, W. L. (1978). Proc. Natl. Acad. Sci. USA 75, 2959–2963.PubMedCrossRefGoogle Scholar
  3. Amkraut, A. A., and Martins, A. B. (1984). U.S. Patent #4,484,923.Google Scholar
  4. Beck, L. R., Cowsar, D. R., and Lewis, D. H. (1980). In Biodegradable Delivery Systems for Contraceptive (E. S. E. Hafez and W. A. A. Van Os, eds.), pp. 63–81, G. K. Hall, Boston.Google Scholar
  5. Couvreur, P., Kante, P., Roland, M., Gulot, P., Bauduin, P., and Speiser, P. (1979). J. Pharm. Pharmacol. 31, 331–332.PubMedCrossRefGoogle Scholar
  6. Creque, H. M., Langer, R., and Folkman, J. (1900). Diabetes 29, 37–40.CrossRefGoogle Scholar
  7. De Clercq, E., and Luczak, M. (1976). J. Infect. Dis. 133, A226–A236.PubMedCrossRefGoogle Scholar
  8. Desiderio, J. V., and Campbell, S. G. (1983). J. Reticuloendothel. Soc. 34, 279–287.PubMedGoogle Scholar
  9. Dietrich, F. M., Lukas, B., and Schmidt-Ruppin, H. H. (1983). Proc. 13th Int. Congr. Chemother. Vienna 91, 50–53.Google Scholar
  10. Durr, F. E., Lindh, H. F., and Forbes, M. (1975). Antimicrob. Agents Chemother. 7, 582–586.PubMedCrossRefGoogle Scholar
  11. Eppstein, D. A. (1986A). In Drug Targeting with Synthetic Systems (G. Gregoriadis, ed.), pp. 207–219, NATO ASI Conference, 1985, Plenum, New York.CrossRefGoogle Scholar
  12. Eppstein, D. A. (1986b). In Delvery Systems for Peptide Drugs (S. S. Davis, L. Illum, and E. Tomlinson, eds.), pp. 277–283, Plenum, New York.CrossRefGoogle Scholar
  13. Eppstein, D. A., and Feigner, P. L. (1987). In Liposomes as Drug Carriers: Trends and Progress (G. Gregoriadis, ed.), Wiley, New York (in press).Google Scholar
  14. Eppstein, D. A., Marsh, Y. V., van der Pas, M. A., Felgner, P. L., and Schreiber, A. B. (1985). Proc. Natl. Acad. Sci. USA 82, 3688–3692.PubMedCrossRefGoogle Scholar
  15. Fidler, I. J., Sone, S., Fogler, W. E., Smith, D., Braun, D. G., Tarcsay, L., Gisler, R. H., and Schroit, A. J. (1982). J. BIol. Response Modif. 1, 43–55.Google Scholar
  16. Gisler, R. H., Schumann, G., Sackman, W., Pericin, C., Tarcsay, L., and Dietrich, F. M. (1982). In Immunomodulation by Microbial Products and Related Synthetic Compounds (Y. Yamamura and S. Kotani, eds.), pp. 167–170, Excerpta Medica, Amsterdam.Google Scholar
  17. Graybill, J. R., Craven, P. C., Taylor, R. L., Williams, D. M., and Magee, W. E. (1982). J. Infect. Dis. 145, 748–752.PubMedCrossRefGoogle Scholar
  18. Grislain, L., Couvreur, P., Lenaerts, V., Roland, M., Deeprez-Decampeneere, D., and Speiser, P. P. (1983). Int. J. Pharm. 83, 335–345.CrossRefGoogle Scholar
  19. Kende, M., Alving, C. R., Rill, W. L., Swartz, G. M., Jr., and Canonico, P. G. (1985). Antimicrob. Agents Chemother. 27, 903–907.PubMedCrossRefGoogle Scholar
  20. Koff, W. C., Fidler, I. J., Showalter, S. D., Chakrabarty, M. K., Hapar, B., Ceccorulli, L. M., and Kleiner-man, E. S. (1984). Science 224, 1007–1009.PubMedCrossRefGoogle Scholar
  21. Koff, W. C., Showalter, S. D., Hampar, B., and Fidler, I. J. (1985). Science 228, 495–497.PubMedCrossRefGoogle Scholar
  22. Kopacek, J., Rejmanova, P., Duncan, R., and Lloyd, J. B. (1985). In Macromolecules as drugs and as Carriers for Biologically Active Materials (D. A. Tirell, L. G. Donaruma, and A. B. Turek, eds.), pp. 93–104, New York Academy of Science, New York.Google Scholar
  23. Kreuter, J. (1983). Pharmacol. Acta Helv. 58, 217–226.Google Scholar
  24. Kreuter, J., and Liehl, E. (1978), Med. Microbiol. Immunol. (Berl.) 165, 111–117.CrossRefGoogle Scholar
  25. Kreuter, J., and Liehl, E. (1981). J. Pharm. Sci. 70, 367–371.PubMedCrossRefGoogle Scholar
  26. Kreuter, J., and Speiser, P. P. (1976a). Infect. Immun. 13, 204–210.PubMedGoogle Scholar
  27. Kreuter, J., and Speiser, P. P. (1976b), J. Pharm. Sci. 65, 1624–1627.PubMedCrossRefGoogle Scholar
  28. Kreuter, J., and Zehnder, H. J. (1978). Radiat. Effects 35, 161–166.CrossRefGoogle Scholar
  29. Kreuter, J., Mauler, R., Gruschkau, H., and Speiser, P. P. (1976). Exp. Cell. Biol. 44, 12–19.PubMedGoogle Scholar
  30. Kreuter, J., Nefzger, M., Liehl, E., Czok, R., and Voges, R. (1983). J. Pharm. Sci. 72, 1146–1149.PubMedCrossRefGoogle Scholar
  31. Langer, R. (1981). Methods Enzymol. 73, 57–75.PubMedCrossRefGoogle Scholar
  32. Lopez-Berestein, G., Mehta, G. R., Hopfer, R. L., Mills, K., Kasi, L., Mehta, K., Fainstein, V., Luna, M., Hersh, E. M., and Juliano, R., (1983). J. Infect. Dis. 147, 939–945.PubMedCrossRefGoogle Scholar
  33. Nachtigal, M., and Caulfield, J. B. (1984). Am. J. Pathol. 115, 175–185.PubMedGoogle Scholar
  34. New, R. R., Chance, M. L., and Heath, S. (1981). J. Antimicrob. Chemother. 8, 371–381.PubMedCrossRefGoogle Scholar
  35. Sanders, L. M., Kent, J. S., McRae, G. L., Vickery, B. H., Tice, T. R., Lewis, D. H. (1984). J. Pharm. Sci. 73, 1294–1297.PubMedCrossRefGoogle Scholar
  36. Sidwell, R. W., Allen, L. B., Khare, G. P., Huffman, J. H., Witkowski, J. T., Simon, L. N., and Robbins, R. K. (1973). Antimicrob. Agents Chemother. 3, 242–246.PubMedCrossRefGoogle Scholar
  37. Soike, K. F., Eppstein, D., Gloss, C. A., Cantrell, C., Chou, T. C., and Jerome, P. J. (1987). J. Infect. Dis. 156, (in press).Google Scholar
  38. Tremblay, C., Barza, M., Fiore, C., and Szoka, F. (1984). Antimicrob. Agents Chemother. 26, 170–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • M. Kende
    • 1
  • D. J. Gangemi
    • 2
  • W. Lange
    • 3
  • D. A. Eppstein
    • 4
  • J. Kreuter
    • 5
  • P. G. Canonico
    • 1
  1. 1.United States Army Medical Research Institute for Infectious DiseasesFort Detrick, FrederickUSA
  2. 2.School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
  3. 3.Federal Health OfficeRobert Koch InstituteWest BerlinGermany
  4. 4.Syntex ResearchInstitute of Bio-Organic ChemistryPalo AltoUSA
  5. 5.Institute of Pharmaceutical TechnologyJohann Wolfgang Goethe UniversityFrankfurtFederal Republic of Germany

Personalised recommendations