Advertisement

Chemical Synthesis of Poliovirus Peptides and Neutralizing Antibody Responses

  • Michael G. Murray
  • Eckard Wimmer
Chapter
Part of the Applied Virology Research book series (AOTP, volume 1)

Abstract

Poliomyelitis, a disease caused by polio virus, remains a serious health problem throughout the world. Only in developed countries where the existing vaccines are regularly administered is the incidence of the disease low. However, occasional outbreaks of poliomyelitis in developed countries, albeit rare, are evidence of the present danger of infection with neurovirulent strains that may be imported from other places in the world. Moreover, the existing live vaccines produce a very low level of disease in vaccine recipients and/or persons coming in contact with vaccine recipients. During 1975–1984, the incidence of vaccine related poliomyelitis in the United States of America was one case per 3.22 × 106 doses of live vaccine administered to immunologically normal recipients (CDC., 1986). Even such low incidence has aroused much public discussion recently (Chasan, 1986). Organizations concerned with public health, such as the World Health Organization (WHO), are interested therefore in developing programs that may eventually lead to the worldwide eradication of poliomyelitis. It should be stressed that the existing live (OPV) and inactivated (IPV) vaccines have proven to be excellent vaccines whenever applied properly. However, investigation to identify and eliminate those properties of the OPV strains that are responsible for reversion to the neurovirulent phenotype or research to explore the possibility of augmenting a protective immune response by the development of synthetic antigens has become an important subject for the WHO: Although much effort may have to be expended, a synthetic vaccine may be developed that possesses the required potency and that can be produced at such low cost, that it can be considered as an alternative to those vaccines now in existence. This in turn may serve as a model to combat other enteroviral disease such as hepatitis caused by HAV.

Keywords

Synthetic Peptide Capsid Protein Vaccine Recipient Neutralize Antibody Response Native Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderer, F. A., and Schlumberger, H. D. (1965). Biochim. Biophys. Acta 97, 503–509.PubMedCrossRefGoogle Scholar
  2. Beneke, T. W., Habermehl, K. O., Diefenthal, W., and Budiholtz, M. (1977). J. Gen. Virol. 34, 387–390.PubMedCrossRefGoogle Scholar
  3. Bittle, J. L., Houghten, R. A., Alexander, H., Shinnick, T. M., Sutcliffe, Y. G., Lerner, R. A., Rowlands, D. Y., and Brown, F. (1982). Nature (Lond.) 298, 30–33.CrossRefGoogle Scholar
  4. Blondel, B., Akacem, O., Crainic, R., Corillin, P., and Horodniceanu, F. (1983). Virology 126, 707–710.PubMedCrossRefGoogle Scholar
  5. Blondel, B., Crainic, R., Fichot, O., Onfraisse, G., Candrea, A., Diamond, D. C., Girard, M., and Horand, F. (1986). J. Virol. 57, 81–90.PubMedGoogle Scholar
  6. Carroll, A. R., Rowlands, D. J., and Clarke, B. E. (1984). Nucleic Acids Res. 12, 2461–2472.PubMedCrossRefGoogle Scholar
  7. Centers for Disease Control. (1986). MMWR 35, (11), 180–182.Google Scholar
  8. Chasan, D. J. (1986). Science 86, 37–39.Google Scholar
  9. Chow, M., Yabrov, R., Bittle, J., Hogle, J., and Baltimore, D. (1985). Proc. Natl. Acad. Sci. USA 82, 910–914.PubMedCrossRefGoogle Scholar
  10. Davis, B.D., Dulbecco, R., Eisen, H. N., and Ginsberg, H. S. (1980). Microbiology 3rd ed., Harper and Row, New York.Google Scholar
  11. Dernick, R., Heukeshoven, Y., and Hilbrig, M. (1983). Virology 130, 243–246.PubMedCrossRefGoogle Scholar
  12. Diamond, D. C., Wimmer, E., and Emini, E. A. (1987). In Synthetic Vaccines, Vol. II (R. Arnon, ed.), CRC Press, Boca Raton, Florida, pp. 79–91.Google Scholar
  13. Diamond, D. C., Jameson, B. A., Bonin, J., Kohara, M., Abe, S., Itoh, H., Komatsu, T., Arita, M., Kuge, S., Osterhaus, A. D. M. E., Crainic, R., Nomoto, A., and Wimmer, E. (1985). Science 229, 1090–1093.PubMedCrossRefGoogle Scholar
  14. DiMarchi, R., Brooke, G., Gale, C., Cracknell, V., Doel, T., and Mowat, N. (1986) Science 232, 639–641.PubMedCrossRefGoogle Scholar
  15. Dreesman, G. R., Sanchez, Y., Ionescu-Matiu, I., Sparrow, J. T., Six, H. R., Peterson, D. L., Hollinger, F. B., and Melnick, J. L. (1982). Nature (Lond.) 295, 158–160.CrossRefGoogle Scholar
  16. Emini, E. A., Jameson, B. A., and Wimmer, E. (1983a). Nature (Lond.) 304, 699–703.CrossRefGoogle Scholar
  17. Emini, E. A., Kao, S.-Y., Lewis, A. J., Crainic, R., and Wimmer, E. (1983b). J. Virol. 46, 466–474.PubMedGoogle Scholar
  18. Emini, E. A., Jameson, B. A., and Wimmer, E. (1984). J. Virol. 52, 719–721.PubMedGoogle Scholar
  19. Evans, D. M. A., Minor, P. D., Schild, G. C., and Almond, J. W. (1983). Nature (Lond.) 304, 459–462.CrossRefGoogle Scholar
  20. Ferguson, M., Evans, D. M. A., Magrath, D. I., Minor, P. D., Almond, J. W., and Schild, G. C. (1985). Virology 143, 505–515.PubMedCrossRefGoogle Scholar
  21. Francis, M. J., Fry, C. M., Rowlands, D. J., Brown, F., Bittle, J. L., Houghten, R. A., and Lerner, R. A. (1985a). J. Gen. Virol. 66, 2347–2354.PubMedCrossRefGoogle Scholar
  22. Francis, M. J., Fry, C. M., Rowlands, D. J., Brown, F., Bittle, J. L., Houghten, R. A., and Lerner, R. A. (1985b). In Vaccines 85 (R. A. Lerner, R. M. Chanock, and F. Brown, eds.), pp. 203-210, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  23. Hogle, J. M., Chow, M., and Filman, D. J. (1985). Science 229, 1358–1363.PubMedCrossRefGoogle Scholar
  24. Icenogle, J. P., Minor, P. D., Ferguson, M., and Hogle, J. M. (1986). J. Virol, 60, 297–301.PubMedGoogle Scholar
  25. Jameson, B. A., Bonin, J., Murray, M. G., Wimmer, E., and Kew, O. (1985). In Vaccines 85 (R. A. Lerner, R. M. Chanock, and F. Brown, eds.), pp. 191–198, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  26. Kitamura, N., Semler, B. L., Rothberg, P. G., Larsen, G. R., Adler, C. J., Dorner, A. J., Emini, E. A., Hanecak, R., Lee, J. J., van der Werf, S., Anderson, C. W., and Wimmer, E. (1981). Nature (Lond.) 291, 547–553.CrossRefGoogle Scholar
  27. Koch, F., and Koch, G. (1985). The Molecular Biology of Poliovirus, Springer-Verlag, New York.CrossRefGoogle Scholar
  28. Kuhn, R. J., and Wimmer, E. (1986). In The Molecular Biology of Positive Strand RNA Viruses (D. J. Rowlands, B. W. J. Mahy, and M. Mayo, eds.) Academic Press, Orlando, Florida.Google Scholar
  29. LaMonica, N., Merian, C., and Racaniello, V. R. (1986). J. Virol, 57, 515–525.Google Scholar
  30. Lee, Y. F., Nomoto, A., Detjen, B. M., and Wimmer, E. (1977). Proc. Natl, Acad. Sci. USA 74, 59–63.CrossRefGoogle Scholar
  31. Lonberg-Holm, K., and Butterworth, B. E. (1976). Virology 71, 207–216.PubMedCrossRefGoogle Scholar
  32. Minor, P. D., Schild, G. C., Bootman, J., Evans, D. M. A., Ferguson, M., Reeves, P., Spitz, M., Stanway, G., Cann, A. J., Haupmann, R., Clarke, L. D., Mountford, R. C., and Almond, J. W. (1983). Nature (Lond.) 301, 674–679.CrossRefGoogle Scholar
  33. Minor, P. D., Evans, D. M. A., Ferguson, M., Schild, G. C., Westrop, G., and Almond, J. (1985). J. Gen. Virol. 65, 1159–1165.CrossRefGoogle Scholar
  34. Nicklin, M. J. H., Toyoda, H., Murray, M. G., and Wimmer, E. (1986). Biotechnology 4, 33–42.CrossRefGoogle Scholar
  35. Nomoto, A., Detjen, B., Pozzatti, R., and Wimmer, E. (1977). Nature (Lond.) 268, 208–213.CrossRefGoogle Scholar
  36. Nomoto, A., Omata, T., Toyoda, H., Kuge, S., Horie, H., Kataoka, Y., Genba, Y., Nakano, Y., and Imura, N. (1982). Proc. Natl. Acad. Sci. USA 79, 5793–5797.PubMedCrossRefGoogle Scholar
  37. Omata, T., Kohara, M., Sakai, Y., Kameda, A., Imura, N., and Nomoto, A. (1984). Gene 32, 1–10.PubMedCrossRefGoogle Scholar
  38. Palmenberg, A. C., Kirby, E. M., Janda, M. R., Drake, N. L., Duke, G. M., Potratz, K. F., and Collett, M. S. (1984). Nucleic Acids. Res. 12, 2969–2985.PubMedCrossRefGoogle Scholar
  39. Racaniello, V. R., and Baltimore, D. (1981a). Science 214, 916–919.PubMedCrossRefGoogle Scholar
  40. Racaniello, V. R., and Baltimore, D. (1981b). Proc. Natl. Acad. Sci. USA 78, 4887–4891.PubMedCrossRefGoogle Scholar
  41. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G. (1985). Nature (Lond.) 317, 145–153.CrossRefGoogle Scholar
  42. Rothberg, P. G., Harris, T. J. R., Nomoto, A., and Wimmer, E. (1978). Proc. Natl. Acad. Sci. USA 75, 4868–4872.PubMedCrossRefGoogle Scholar
  43. Semler, B. L., Dorner, A. J., and Wimmer, E. (1984). Nucleic Acids. Res. 12, 5123–5141.PubMedCrossRefGoogle Scholar
  44. Skerm, T., Sommergruber, W., Blaas, D., Gruender, P., Fraundorfer, F., Pieler, C., Fogy, I., and Kuechler, E. (1985). Nucleic Acids Res. 13, 2111–2126.CrossRefGoogle Scholar
  45. Stanway, G., Cann, A. J., Hauptmann, R., Hughes, P., Clark, L. D., Mountford, R. C., Minor, P. D., Schild, G. C., and Almond, J. W. (1983). Nucleic Acids Res. 11, 5629–5643.PubMedCrossRefGoogle Scholar
  46. Stringfellow, D. A., Bale, J. F., Corey, L., Couch, R. B., Glasgow, L. A., Korn, E. R., Lennette, D. A., Lennette, E. T., Rapp, F., and Stanberry, L. R. (1983). Virology The Upjohn Company, Kalamazoo, Michigan.Google Scholar
  47. Toyoda, H., Kohara, M., Kataoka, Y., Suganuma, T., Omata, T., Imura, N., and Nomoto, A. (1984). J. Mol. Biol. 174, 561–585.PubMedCrossRefGoogle Scholar
  48. van der Marel, P., Hazendank, T. G., Henneke, M. A. C., and van Wezel, A. L. (1983). Vaccine 1, 17–22.PubMedCrossRefGoogle Scholar
  49. Wetz, K., and Habermehl, K.-O. (1979). J. Gen. Virol. 44, 525–534.PubMedCrossRefGoogle Scholar
  50. Wimmer, E., Emini, E. A., and Diamond, D. C. (1986). In Concepts in Viral Pathogenesis Vol. II, (A. L. Notkins and M. B. A. Oldstone, eds.), pp. 159–173, Springer-Verlag, New York.Google Scholar
  51. Wychowski, C., van der Werf, S., Siffert, O., Crainic, R., Bruneau, P., and Girard, M. (1983). EMBO J. 2, 2019–2024.PubMedGoogle Scholar
  52. Yogo, Y., and Wimmer, E. (1975). J. Mol. Biol. 92, 467–477.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael G. Murray
    • 1
  • Eckard Wimmer
    • 1
  1. 1.Department of Microbiology, School of Medicine, Health Sciences CenterState University of New York at Stony BrookStony BrookUSA

Personalised recommendations