Biospecific Interaction Analysis in Real Time Using a Biosensor System with Surface Plasmon Resonance Detection

  • Lars G. Fägerstam
Part of the Applied Virology Research book series (AVIR, volume 3)


All biological molecules express their function through interactions with other molecules. Characterization of these interactions is therefore of fundamental interest in many areas of biological research and biotechnological development. A promising area of development in biospecific interaction analysis is the use of biosensors to detect and measure interactions in real time. A biosensor may be defined as an instrument that combines a biological recognition mechanism with a sensing device or transducer (Ngwainbi, 1990).The transducer generates a measurable signal in response to the specific recognition process. This chapter describes a system using flow injection technology combined with a biosensor based on the optical phenomenon surface plasmon resonance (SPR) for detection of biospecific interactions. SPR detection as described here allows monitoring of the interactions as they occur. SPR has previously been applied to concentration analysis of biomolecules (Liedberg et al.,1983) and for monitoring of immunocomplex formation (Flanagan et al.,1984, Cullen et al.,1987, Daniels et al., 1988, Kooyman et al ., 1988).


Surface Plasmon Resonance Resonance Signal Sensor Surface Sensor Chip Resonance Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade, J.D. (1986) Surface and Interfacial Aspects of Biomedical Polymers: Surface Chemistry and Physics. Plenum Press, New York.Google Scholar
  2. Atassi, M. Z. (1984) European J. Biochern. 145, 1–20.CrossRefGoogle Scholar
  3. Azimzadeh, A. and Van Regenmortel, M. H. V. (1990) J. Mol. Recognition 3, 108CrossRefGoogle Scholar
  4. Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whiteside, G. M. and Nuzzo, R. G. (1989) J. Am. Chem. Soc. 111, 321.CrossRefGoogle Scholar
  5. Benjamin, D. C., Berzofsky, J. A., East, I. J., Curd, F. R. N., Hannum, C., Leach, S. J., Margoliash, E., Michael, J. G., Miller, A., Prager, E. M., Reichlin, M., Sercarz, E. E., Smith-Gill, S. J., Todd, P. E. and Wilson, A. C. (1984) Ann. Rev. Immunol. 2, 67–101.CrossRefGoogle Scholar
  6. Boardman, A. D. (1982) Electromagnetic Surface Modes. John Wiley and Sons, Chichester.Google Scholar
  7. Burnens, A., Demotz, S., Corradin, G. Binz, H. and Bosshard, R. (1987) Science 235, 780–783.PubMedCrossRefGoogle Scholar
  8. Crawford, G. D., Correa, L. and Salvaterra, P. M. (1982) Proc. Natl. Acad. Sci. LISA 79, 7031–7035.CrossRefGoogle Scholar
  9. Cullen D. C., Brown, R. and Lowe, C. (1987) Biosensors 3, 211–225.PubMedCrossRefGoogle Scholar
  10. Dandliker, W. B. andLevison, S. A. (1967) Immunochemistry 5, 171CrossRefGoogle Scholar
  11. Daniels, P. B., Deacon, J. K., Eddowes, M. J. and Pedley, D. G. (1988) Sensors and Actuators 15, 11–18.CrossRefGoogle Scholar
  12. Fägerstam, L. G., Frostell, A., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M. and Butt, H. (1990) J. Mol. Recognition 3, 208–214.CrossRefGoogle Scholar
  13. Flanagan, M. T. and Pantell, R. H. (1984) Electron. Letters 20, 968–970.CrossRefGoogle Scholar
  14. Froese, A. (1968) Immunochemistry 5, 253.PubMedCrossRefGoogle Scholar
  15. Geysen, H. M., Mason, T. M. and Rodda, S. J. (1988) J. Mol. Recognition 1, 32–41.CrossRefGoogle Scholar
  16. Hopp, T. P. and Woods, K. R. (1981) Proc. Natl. Acad. Sci. LISA 78, 3824–3828.CrossRefGoogle Scholar
  17. Johnstone, R. W., Andrew, S. M., Hogarth, M. P. Pietersz, G. A. and McKenzie, I. F. (1990) Mol. Immunology 27, 327CrossRefGoogle Scholar
  18. Kooyman, R. P. H., Kolkman, H., Van Gent, J. and Greve, F. (1988) Anal. Chim. Acta 213, 35–45.CrossRefGoogle Scholar
  19. Kronick, M. N. and Little, W. A. (1975) J. Immunol. Methods 8, 235–240.PubMedCrossRefGoogle Scholar
  20. Liedberg, B., Nylander, C. and Lundström, I. (1983) Sensors and Actuators 4, 229–304.CrossRefGoogle Scholar
  21. Löfas, S and Johnsson, B. (1990) J. Chem. Soc. Chem. Commun. 21, 1526–1528.CrossRefGoogle Scholar
  22. Mason, D.W. and Williams, A.F. (1986) In Handbook of experimental Immunology. Vol 1. Immunochemistry. (D. Weir, ed.). Blackwell Scientific Publications, Oxford.Google Scholar
  23. Mazza, M. M. and Retegui, L. A. (1989) Mol. Immunol. 26, 231–240.PubMedCrossRefGoogle Scholar
  24. Ngwainbi, J. (1990) Biosensors and Bioelectronics 5, 13.CrossRefGoogle Scholar
  25. Nuzzo, R. G. and Allara, D. J. (1983) J. Am. Chem. Soc. 105, 4481.CrossRefGoogle Scholar
  26. Olson, W. C., Spitznagel, T. M. and Yarmush, M. L. (1989) Mol. Immunol. 26, 129PubMedCrossRefGoogle Scholar
  27. Raether, H. (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Verlag, Berlin.Google Scholar
  28. Skubitz, K. M. and Smith, T. W. (1975) J. Immunology 114, 1369Google Scholar
  29. Stanley, C., Lew, A.M. and Steward, M.W. (1983) J. Immunol. Methods 64, 119CrossRefGoogle Scholar
  30. Stenberg, E., Persson, B., Roos, H. and Urbaniczky, C. (1991) J. Colloid Interface Sci. 143, 513–526.CrossRefGoogle Scholar
  31. Steward, M.W. (1986) Handbook of Experimental Immunology. Immunochemistry. Blackwell Scientific Publications, Oxford.Google Scholar
  32. Van Regenmortel, M. H. V. and de Marcillac, G. D. (1988) Immunol. Letters 17, 95–108.CrossRefGoogle Scholar
  33. Wilson, J. E. and Smith, A. D. (1984) Anal. Biochem. 143, 179–187.PubMedCrossRefGoogle Scholar
  34. Yarmush, D. M., Morel, G. and Yarmush, M. L. (1987) J. Biochem. Biophys. Methods 14, 279–289.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Lars G. Fägerstam
    • 1
  1. 1.Pharmacia Biosensor ABUppsalaSweden

Personalised recommendations