Advertisement

Multiconfigurational Green’s Function (Propagator) Techniques for Excitation Energies, Ionization Potentials, and Electron Affinities: An Overview

  • Danny L. Yeager

Abstract

With Green’s function or propagator techniques electronic excitation energies, ionization potentials, electron affinities, electronic transition probabilities, and other response properties can be accurately calculated. These techniques have several significant advantages over more conventional ab initio approaches to electronic energy difference calculations such as ΔMCSCF and ΔCI. Included among these are: 1) Energy differences such as electronic excitation energies and ionization potentials are calculated directly rather than as differences of two (fairly large) total electronic energies and hence, “correlation corrections” are more easily “balanced” than with most other approaches; 2) For excitation, ionization, and attachment energies, propagator techniques mimic Δ full CI at a small fraction of the computer time and cost; 3) The polarization propagator is the correct linear response of a system to an external perturbation (e.g. an electromagnetic field) so response properties such as frequency dependent polarizabilities are calculated reliably and accurately; and 4) The length, velocity, and acceleration forms of the oscillator strength are equal in the limit of a complete basis set of orbitals.

Propagator techniques which are based on an initial multiconfigurational (MC) reference state and which do not use perturbation theory methods are often preferable to perturbational propagator approaches. This is because with these MC propagator techniques even highly correlated and open shell atoms and molecules can be easily and accurately handled. The single particle multiconfigurational Green’s function approach I will discuss here gives excellent inner and outer valence shake-up and principal ionization potentials (IPs) and electron affinities (EAs). It is known as the multiconfigurational spin tensor electron propagator method (MCSTEP). Another of our multiconfigurational Green’s function approaches is known as the multiconfigurational time dependent Hartree Fock (MCTDHF) or multiconfigurational linear response (MCLR). With MCTDHF/MCLR accurate atomic and molecular electronic excitation energies, oscillator strengths, polarizabilities, and other response properties are obtained. We have also recently proposed and developed the multiconfigurational particle-particle propagator (MCP2P) for directly and accurately determining double ionization potentials and double electron affinities. In addition to theoretical developments I will present results of several calculations which demonstrate MCSTEP, MCTDHF/MCLR, and MCP2P.

Keywords

Ionization Potential Electron Affinity Configuration Interaction Open Shell Complete Active Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Linderberg and Y. Öhrn, “Propagators in Quantum Chemistry,” Academic Press, London (1973).Google Scholar
  2. 2.
    P. Jorgensen and J. Simons, “Second Quantization-Based Methods in Quantum Chemistry,” Academic Press, New York (1981).Google Scholar
  3. 3.
    C. W. McCurdy, T. Rescigno, D. L. Yeager and V. McKoy, in: “Methods of Electronic Structures,” H. F. Schaefer III, ed., Plenum, New York (1977).Google Scholar
  4. 4.
    L. S. Cederbaum, G. Hohlneicher, and W. von Niessen, Chem. Phys. Lett. 18: 503 (1973).CrossRefGoogle Scholar
  5. 5.
    L. S. Cederbaum, W. Domcke, J. Schirmer, and W. von Niessen, Adv. Chem. Phys. 65: 115 (1986).CrossRefGoogle Scholar
  6. 6.
    M. F. Herman, K. F. Freed, and D. L. Yeager, Adv. Chem. Phys. 48: 1 (1981).CrossRefGoogle Scholar
  7. 7.
    J. Oddershede, Adv. Chem. Phys. LXIX: 201 (1987).Google Scholar
  8. 8.
    J. Simons, Annual Rev. Phys. Chem. 28: 15 (1977).CrossRefGoogle Scholar
  9. 9.
    J. Oddershede, P. Jorgensen, and D. Yeager, Comp. Phys. Rep. 2: 33 (1984).CrossRefGoogle Scholar
  10. 10.
    J. Oddershede, Adv. Quantum Chem. 11: 257 (1978).Google Scholar
  11. 11.
    G. Born and Y. ()him, Adv. Quantum Chem. 13: 1 (1981).CrossRefGoogle Scholar
  12. 12.
    J. V. Ortiz, Chem. Phys. Lett. 136: 387 (1987).CrossRefGoogle Scholar
  13. 13.
    J. Olsen, B. J. Roos, P. Jorgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89: 2185 (1989).CrossRefGoogle Scholar
  14. 14.
    J. Olsen, H. J. Aa. Jensen and P. Jorgensen, J. Comp. Phys. 74: 265 (1988).CrossRefGoogle Scholar
  15. 15.
    J. Olsen, D. Yeager, and P. Jorgensen, J. Chem. Phys. 91: 381 (1989).CrossRefGoogle Scholar
  16. 16.
    D. N. Zubarev, “Nonequilibrium Statistical Thermodynamics,” Consultants Bureau, New York (1974).Google Scholar
  17. 17.
    O. Goscinski and B. Lukman, Chem. Phys. Lett. 7: 573 (1970).CrossRefGoogle Scholar
  18. 18.
    B. T. Pickup and O. Goscinski, Mol. Phys. 26: 1013 (1973).CrossRefGoogle Scholar
  19. 19.
    P.-O. Löwdin, Phys. Rev. 139: 357 (1965).CrossRefGoogle Scholar
  20. 20.
    J. Simons, J. Chem. Phys. 64: 4541 (1976).CrossRefGoogle Scholar
  21. 21.
    E. Dalgaard, Int. J. Quantum Chem. XV: 169 (1979).Google Scholar
  22. 22.
    R. Manne, Chem. Phys. Lett. 45: 470 (1977).CrossRefGoogle Scholar
  23. 23.
    J. Nichols, D. Yeager, and P. Jorgensen, J. Chem. Phys. 80: 293 (1984).CrossRefGoogle Scholar
  24. 24.
    B. T. Pickup and A. Mukopadhyay, Chem. Phys. Lett. 79: 109 (1981).CrossRefGoogle Scholar
  25. 25.
    J. T. Golab and D. L. Yeager, J. Chem. Phys. 87: 2925 (1987).CrossRefGoogle Scholar
  26. 26.
    D. L. Yeager and P. Jorgensen, Chem. Phys. Lett. 65: 77 (1979).CrossRefGoogle Scholar
  27. 27.
    E. Dalgaard, J. Chem. Phys. 72: 816 (1980).CrossRefGoogle Scholar
  28. 28.
    D. J. Rowe and C. Ngo-Trong, Rev. Mod. Phys. 47: 471 (1975).CrossRefGoogle Scholar
  29. 29.
    M. E. Rose, “Elementary Theory of Angular Momentum,” John Wiley, New York (1957).Google Scholar
  30. 30.
    D. L. Yeager and P. Jorgensen, J. Chem. Phys. 71: 755 (1979).CrossRefGoogle Scholar
  31. 31.
    D. Yeager and P. Jorgensen, Mol. Phys. 39: 587 (1980).CrossRefGoogle Scholar
  32. 32.
    J. Olsen, D. L. Yeager, and P. Jorgensen, Adv. Chem. Phys. 54: 1 (1983).CrossRefGoogle Scholar
  33. 33.
    P. Jorgensen, P. Swanstrom, and D. L. Yeager, J. Chem. Phys. 78: 347 (1982).CrossRefGoogle Scholar
  34. 34.
    J. Golab, D. Yeager, and P. Jorgensen, Chem. Phys. 78: 175 (1983).CrossRefGoogle Scholar
  35. 35.
    J. Golab, D. Yeager, and P. Jorgensen, Chem. Phys. 93: 83 (1985).CrossRefGoogle Scholar
  36. 36.
    A. Rizzo and D. Yeager, J. Chem. Phys. 93: 8011 (1990).CrossRefGoogle Scholar
  37. 37.
    K. Andersson, P. Malmqvist, B. Roos, A. Sadlej, and K. Wolinski, J. Phys. Chem. 94: 5483 (1990).CrossRefGoogle Scholar
  38. 38.
    D. J. Rowe, “Nuclear Collective Motion,” Methuen, London (1970).Google Scholar
  39. 39.
    M. F. Herman and K. F. Freed, Chem. Phys. 36: 383 (1979).CrossRefGoogle Scholar
  40. 40.
    P. Albertsen and P. Jorgensen, J. Chem. Phys. 70:3254 (1979); ibid 71: 4652 (1979).Google Scholar
  41. 41.
    G. D. Purvis and Y. Ohm, J. Chem. Phys. 62: 2045 (1975).CrossRefGoogle Scholar
  42. 42.
    L. S. Cederbaum and J. Schirmer, Z. Physik 271:221 (1974); J. Schirmer, L. S. Cederbaum, and W. von Niessen, Chem. Phys. 56: 285 (1981).CrossRefGoogle Scholar
  43. 43.
    P. Tomasello, W. von Niessen, J. Schirmer, and L. S. Cederbaum, J. Electron Spec. 40: 193 (1986).CrossRefGoogle Scholar
  44. 44.
    J. Golab, B. Thies, D. Yeager, and J. Nichols, J. Chem. Phys. 84:284 (1986); erratum, J. Chem. Phys. 87: 778 (1987).Google Scholar
  45. 45.
    J. Golab, D. Yeager, and P. Swanstrom, Chem. Phys. 110: 339 (1986).CrossRefGoogle Scholar
  46. 46.
    K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, “Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules,” John Wiley, New York (1981).Google Scholar
  47. 47.
    J. A. R. Samson, J. L. Gardner, and G. N. Haddad, J. Electron Spectrosc. 12: 28 (1977).CrossRefGoogle Scholar
  48. 48.
    H. van Lonkhuzen and C. A. de Lange, Chem. Phys. 89: 313 (1984).CrossRefGoogle Scholar
  49. 49.
    J. Baker, R. Nobes, and L. Radom. J. Comp. Chem. 7: 349 (1986).CrossRefGoogle Scholar
  50. 50.
    J. V. Ortiz, Chem. Phys. Lett. 136: 387 (1987).CrossRefGoogle Scholar
  51. 51.
    H. Nakasuji, Int. J. Quantum Chem. S17: 241 (1983).Google Scholar
  52. 52.
    A. Hague and U. Kaldor, Int. J. Quantum Chem. 34: 425 (1986).CrossRefGoogle Scholar
  53. 53.
    R. Graham, J. Golab, and D. Yeager, J. Chem. Phys. 88: 2572 (1988).CrossRefGoogle Scholar
  54. 54.
    S. J. Dunlavey, J. M. Dyke, N. Jonathan, and A. Morris, Mol. Phys. 39:1121 (1980); J. M. Dyke, N. Jonathan, and A. Morris, Int. Rev. Phys. Chem. 2: 3 (1982).CrossRefGoogle Scholar
  55. 55.
    S. Bashkin and J. A. Stoner Jr., “Atomic Energy Levels and Grotrian Diagrams I,” North Holland, Amsterdam (1975).Google Scholar
  56. 56.
    R. Graham, D. Yeager, and A. Rizzo, J. Chem. Phys. 91:5451 (1989); erratum, J. Chem. Phys. 92: 6336 (1990).Google Scholar
  57. 57.
    H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14: 731 (1985).CrossRefGoogle Scholar
  58. 58.
    U. Kaldor, J. Chem. Phys. 87: 4693 (1987).CrossRefGoogle Scholar
  59. 59.
    U. Kaldor, J. Chem. Phys. 88: 5248 (1988).CrossRefGoogle Scholar
  60. 60.
    H. Partridge, D. A. Dixon, S. P. Walch, C. W. Bauschlicher Jr., and J. L. Gole, J. Chem. Phys. 79: 1859 (1983).CrossRefGoogle Scholar
  61. 61.
    B. L. Christensen-Dalsgaard, J. Phys. B 21: 2359 (1988).CrossRefGoogle Scholar
  62. 62.
    J. V. Ortiz, J. Chem. Phys. 89: 6348 (1988).CrossRefGoogle Scholar
  63. 63.
    R. Kubo, J. Phys. Soc. Japan 12: 570 (1959).CrossRefGoogle Scholar
  64. 64.
    T. H. Dunning and V. McKoy, J. Chem. Phys. 47: 1735 (1967).CrossRefGoogle Scholar
  65. 65.
    P. Jorgensen and J. Linderberg, Int. J. Quantum Chem. 4: 587 (1970).CrossRefGoogle Scholar
  66. 66.
    D. L. Yeager and P. Jorgensen, Chem. Phys. Lett. 65: 77 (1979).CrossRefGoogle Scholar
  67. 67.
    P. Albertsen, P. Jorgensen, and D. L. Yeager, Mol. Phys. 41: 409 (1980).CrossRefGoogle Scholar
  68. 68.
    A. Banerjee, J. Kenney III, and J. Simons, Int. J. Quantum Chem. 16: 1209 (1979).CrossRefGoogle Scholar
  69. 69.
    R. McWeeny, Int. J. Quantum Chem. 23:405 (1983); M. Jaszunski and R. McWeeny, Mol. Phys. 46: 863 (1982).Google Scholar
  70. 70.
    E. Dalgaard, J. Chem. Phys. 72:816 (1980); E. Dalgaard, Phys. Rev. A 26: 42 (1982).Google Scholar
  71. 71.
    R. Graham, D. L. Yeager, J. Olsen, P. Jorgensen, R. Harrison, S. Zarrabian, and R. Bartlett, J. Chem. Phys. 85: 6544 (1986).CrossRefGoogle Scholar
  72. 72.
    J. E. Holmström and L. Johansson, Ark. Fys. 40:133 (1969); L. Johansson, ibid. 23: 119 (1962).Google Scholar
  73. 73.
    S. Zarrabian and R. Bartlett, Chem. Phys. Lett. 153: 133 (1988).CrossRefGoogle Scholar
  74. 74.
    J. Geertsen, J. Oddershede, and G. E. Scuseria, Int. J. Quantum Chem. S21: 475 (1987).CrossRefGoogle Scholar
  75. 75.
    R. Graham and D. L. Yeager, Int. J. Quantum Chem. 31: 99 (1987).CrossRefGoogle Scholar
  76. 76.
    I. Martinson, A. Gaupp, and L. J. Curtis, J. Phys. B 7: L463 (1974).CrossRefGoogle Scholar
  77. 77.
    P. Albertsen, P. Jorgensen and D. L. Yeager, Int. J. Quantum Chem. S14: 249 (1980).Google Scholar
  78. 78.
    J. E. Gready, G. N. B. Bacskay and N. S. Hush, Chem. Phys. 23: 9 (1977).CrossRefGoogle Scholar
  79. 79.
    H. Werner and W. Meyer, Phys. Rev. A13: 3 (1976).Google Scholar
  80. 80.
    T. Voegel, J. Hinze and J. Tobin, J. Chem. Phys. 790: 107 (1979).Google Scholar
  81. 81.
    W. J. Stevens and J. P. Billingsley II, Phys. Rev. A6: 855 (1972).Google Scholar
  82. 82.
    H. Kolker and H. H. Michels, J. Chem. Phys. 43: 1027 (1965).CrossRefGoogle Scholar
  83. 83.
    F. Maeder and W. Kutzelnigg, Chem. Phys. 42: 95 (1979).CrossRefGoogle Scholar
  84. 84.
    H. P. Kelly, Phys. Rev. 136: B896 (1964).CrossRefGoogle Scholar
  85. 85.
    P. Jorgensen, J. Oddershede, P. Albertsen and N. H. F. Beebe, J. Chem. Phys. 68: 2533 (1978).CrossRefGoogle Scholar
  86. 86.
    G. H. F. Diercksen and A. J. Sadlej, Chem. Phys. 65: 407 (1982).CrossRefGoogle Scholar
  87. 87.
    J. D. S. Sims and J. R. Rumble Jr., Phys. Rev. 8A: 2231 (1973).CrossRefGoogle Scholar
  88. 88.
    M. J. Scott and E. Zaremba, Phys. Rev. A21: 12 (1980).CrossRefGoogle Scholar
  89. 89.
    L. J. Bartolotti, J. Chem. Phys. 80: 5687 (1984).CrossRefGoogle Scholar
  90. 90.
    P. Albertson, P. Jorgensen, and D. L. Yeager, Int. J. Quantum Chem. S14: 249 (1980).Google Scholar
  91. 91.
    D. Yeager, J. Olsen, and P. Jorgensen, Int. J. Quantum Chem. S15: 151 (1981).Google Scholar
  92. 92.
    J. Nichols and D. Yeager, Chem. Phys. Lett. 84: 77 (1981).CrossRefGoogle Scholar
  93. 93.
    D. Lynch, M. Herman, and D. Yeager, Chem. Phys. 64: 69 (1982).CrossRefGoogle Scholar
  94. 94.
    A. Rizzo, R. Graham, and D. Yeager, J. Chem. Phys. 89: 1533 (1988).CrossRefGoogle Scholar
  95. 95.
    M. Jaszunski, A. Rizzo, and D. Yeager, Chem. Phys. 136: 385 (1989).CrossRefGoogle Scholar
  96. 96.
    M. Jaszunski, A. Rizzo, and D. Yeager, J. Chem. Phys. 89: 3063 (1988).CrossRefGoogle Scholar
  97. 97.
    M. Jaszunski, A. Rizzo, and D. Yeager, Chem. Phys. Lett. 149: 79 (1988).CrossRefGoogle Scholar
  98. 98.
    M. Jaszunski and D. Yeager, Phys. Rev. A40: 1651 (1989).CrossRefGoogle Scholar
  99. 99.
    N. Rahman, A. Rizzo, and D. Yeager, Chem. Phys. Lett. 166: 565 (1990).CrossRefGoogle Scholar
  100. 100.
    P. Jorgensen and J. Simons, J. Chem. Phys. 79: 334 (1983).CrossRefGoogle Scholar
  101. 101.
    T. Helgaker, J. Almlöf, H. J. Aa. Jensen, and P. Jorgensen, J. Chem. Phys. 84: 6266 (1986).CrossRefGoogle Scholar
  102. 102.
    Geometrical Derivatives of Energy Surfaces and Molecular Properties“, P. Jorgensen and J. Simons, ed., Reidel, Dordrecht (1986).Google Scholar
  103. 103.
    R. L. Graham and D. Yeager, J. Chem. Phys. 94: 2884 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Danny L. Yeager
    • 1
  1. 1.Chemistry DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations