Advertisement

A 3-D Optical Database Machine

  • Selim Akyokus
  • P. Bruce Berra

Abstract

This paper presents a 3-D optical database machine that enables the parallel implementation of relational database operations. The basic data element in the proposed system is a 2-D data, page. The data pages are stored in a page-oriented optical mass memory, and processed by an 2-D optical content addressable memory (2-D OCAM) in parallel. A 2-D OCAM enables the comparison of a 2-D search page with a 2-D data page in parallel. Given a search page and a data page of size n × m bits, a 2-D OCAM can perform n 2 × m bit comparisons in single step (if n=512 and m=256, then n 2 × m = 671, 108, 864).

Keywords

Input Unit Data Page Optical Computing Optical Form Match Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. B. Berra, Arif Ghafoor, P.A. Mitkas, S.J. Marcinkowski, and M. Guizani. The Impact of Optics on Data and Knowledge Base Systems. IEEE Trans. Knowledge Data Eng., KDE-1:111–132, 1989.CrossRefGoogle Scholar
  2. [2]
    P. Bruce Berra, Karl-Heinz Brenner, W. Thomas Cathey, H. John Caulfleld, Sing H. Lee, and Harold Szu. Optical database/knowledgebase machines. Applied Optics, 29(2): 195–205, January 1990.CrossRefGoogle Scholar
  3. [3]
    Selim Akyokus and P. Bruce Berra. Optical Content Addressable Memories for Data/Knowledge Base Processing. In Fifth International Parallel Processing Symposium, 1991.Google Scholar
  4. [4]
    Selim Akyokus and P. Bruce Berra. A Data/Knowledge Base Machine Based on an Optical Content Addressable Memory. Journal of Optical Computing and Processing, 2(3):179–187, 1992.Google Scholar
  5. [5]
    Selim Akyokus. Data/Knowledge Processing Using Optical Associative Architectures. PhD Thesis, Syracuse University, Syracuse, N.Y 1992.Google Scholar
  6. [6]
    Y. Ichioka, and J. Tanida. Optical Programmable Array Logic. In Ravindra A. Athale, editor, Digital Optical Computing, pages 221–240. SPIE Optical Engineering Press, 1990.Google Scholar
  7. [7]
    P. Chavel, and J. Taboury. Binary Cellular Automata: Concepts and Architectures. In Ravindra A. Athale, editor, Digital Optical Computing, pages 245–265. SPIE Optical Engineering Press, 1990.Google Scholar
  8. [8]
    A.A. Swachuk. Digital Optical Cellular Computers. In Ravindra A. Athale, editor, Digital Optical Computing, pages 310–329. SPIE Optical Engineering Press, 1990.Google Scholar
  9. [9]
    F.E. Kiamliev, S.C. Esener, V.H. Ozguz, and S.H. Lee. Programmable Optoelectronic Multiprocessor System. In Ravindra A. Athale, editor, Digital Optical Computing, pages 197–220. SPIE Optical Engineering Press, 1990.Google Scholar
  10. [10]
    D.W. Digby. A Search Memory for Many-to-Many Comparisons. IEEE Transactions on Computers, C-22(8):768–772, August 1973.CrossRefGoogle Scholar
  11. [11]
    H.J. Caulfield. Handbook of Holography. Academic Press, 1979.Google Scholar
  12. [12]
    D. Psaltis, A. Yamamura, and Hsin-Yuli. Mass Storage for Digital Optical Computer. In Ravindra A. Athale, editor, Digital Optical Computing, pages 155–165. SPIE Optical Engineering Press, 1990.Google Scholar
  13. [13]
    D. Psaltis, A. Yamamura, M.A. Neifield, and S. Kobayashi. Parallel Readout of Optical Disks. In Proceedings of OSA Top. Meeting on Optical Computing, volume 9, February 1989.Google Scholar
  14. [14]
    D. Psaltis, M.A. Neifield, and A. Yamamura. Optical Disk Based Correlation Architectures. In Proceedings of OSA Top. Meeting on Optical Computing, volume 9, February 1989.Google Scholar
  15. [15]
    D. Psaltis and et al. Optical Memory Disks in Optical Information Processing. Applied Optics, 29(14):2038–2057, 1990.CrossRefGoogle Scholar
  16. [16]
    S. Hunter and et al. Potentials of Two-Photon based 3-D Optical Memories for High Performance Computing. Applied Optics, 29(14):2058–2066, 1990.CrossRefGoogle Scholar
  17. [17]
    S. Redfield. Optical Computing Research at MCC. In Proceedings of OSA Top. Meeting on Optical Computing, volume 9, February 1989.Google Scholar
  18. [18]
    D.D. Henshaw, and A.B. Todtenkopf. Artificial Intelligence Applications of Fast Optical Memory Access. In In SPIE Proceedings of Optical and Hybrid Computing, volume 634, February 1986.Google Scholar
  19. [19]
    T.J. Drabik and S.H. Lee. Shift-Connected SIMD Array Architectures for Digital Optical Computing Systems with Algorithms for Numreical Transform and Partial Differential Equations. Applied Optics, 25(11):2038–2057, November 1986,Google Scholar
  20. [20]
    J. Hong, and P. Yeh. Photorefractive Parallel Matrix-Matrix Multiplier Using A Mutually Incoherent Laser Array. In Proceedings of OSA Top. Meeting on Optical Computing, volume 11, February 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Selim Akyokus
    • 1
  • P. Bruce Berra
    • 2
  1. 1.Department of Computer Science and EngineeringYildiz Technical UniversityIstanbulTurkey
  2. 2.Department of Electrical and Computer EngineeringSyracuse UniversitySyracuseUSA

Personalised recommendations