Advertisement

An Integrated Optical Spectrometer for WDM

  • H. J. Hnatiuk
  • K. A. McGreer
  • J. N. Broughton

Abstract

Wavelength division multiplexed (WDM) systems have several channels of different wavelengths in the 1550 nm wavelength band. Implementation of WDM systems requires demultiplexers to separate the different wavelengths. Compact, low loss demultiplexers can be realized using integrated optical spectrometers. Integrated optical spectrometers may also be used for compact, portable, low cost test instruments that are intended for use on WDM systems. Implementation of WDM systems requires demultiplexers (and multiplexers) to separate the different wavelengths.

Keywords

Wavelength Division Multiplex IEEE Photon Output Fibre Slab Waveguide Input Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.C. Clemens, R. März, A. Reichelt, and H.W. Schneider, Flat-field spectrograph in SiO2/Si, IEEE Photon. Tech. Lett., 4:886 (1992).CrossRefGoogle Scholar
  2. 2.
    P.C. Clemens, G. Heise, R. März, H. Michael, A. Reichelt and H.W. Schneider, 8-Channel optical demultiplexer realized as SiO2/Si flat-field spectrograph, IEEE Photon. Tech. Lett., 6:1109 (1994).CrossRefGoogle Scholar
  3. 3.
    F. Tong, C.-S. Li, A.E. Stevens, and Y.H. Kwark, Characterization of a 16-channel optical/electronic selector for fast packet-switched WDMA networks, IEEE Photon. Tech. Lett., 6:971 (1994).CrossRefGoogle Scholar
  4. 4.
    K. Liu, F. Tong, and S.W. Bond, Planar grating wavelength demultiplexer, SPIE Multigigabit Fiber Communication Systems, 2024:278 (1993).CrossRefGoogle Scholar
  5. 5.
    C. Cremer, G. Ebbinghaus, G. Heise, R. Müller-Nawrath, M. Schienle and L. Stoll, Grating spectrograph in InGaAsP / InP for dense wavelength division multiplexing, Appl. Phys. Lett, 59:627 (1991).CrossRefGoogle Scholar
  6. 6.
    H. Takahashi, S. Suzuki, and I. Nishi, Wavelength multiplexer based on SiO2-Ta2O5 arrayed- waveguide grating, J. Lightwave Technol, 12:989 (1994).CrossRefGoogle Scholar
  7. 7.
    S. Suzuki, Y, Inoue, and Y. Ohmori, Polarisation-insensitive arrayed-waveguide grating multiplexer with SiO2 — on — SiO2 structure, Electron. Lett., 30:642 (1994).CrossRefGoogle Scholar
  8. 8.
    K.A. McGreer, A flat-field broadband spectrograph design, IEEE Photon. Tech. Lett., 7:397 (1995).CrossRefGoogle Scholar
  9. 9.
    K.A. McGreer, Diffraction from concave gratings in planar waveguides”, IEEE Photon. Tech. Lett., 7:324 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H. J. Hnatiuk
    • 1
    • 2
  • K. A. McGreer
    • 1
    • 2
  • J. N. Broughton
    • 3
  1. 1.TRLabsWinnipegCanada
  2. 2.University of ManitobaWinnipegCanada
  3. 3.Alberta Microelectronic CentreEdmontonCanada

Personalised recommendations