Advertisement

High-Finesse Periodic Coupler as a Wavelength Selective Device for WDM

  • Vincent Delisle
  • Udo Trutschel
  • Hugues Tremblay
  • Michel A. Duguay
  • Falk Lederer

Abstract

In the out-going worldwide effort towards increasing the capacity of optical fibers, one is encountering practical problems with time division multiplexing at data rates above 10 Gb/s. Wavelength division multiplexing (WDM) is now widely believed to have the potential for increasing bandwidth 10- to 100-fold. In a WDM system, a comb of optical carriers, of different wavelengths and individually modulated, is multiplexed onto a single optical fiber.

Keywords

Wavelength Division Multiplex Effective Index Coupling Length Optical Carrier Array Waveguide Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ishio, J. Minowa, and K. Nous, “Review and status of wavelength-division-multiplexing technology and its application”, J. Lightwave Techol., vol. 2, pp. 448–463, 1984.CrossRefGoogle Scholar
  2. 2.
    M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeifer, “Antiresonant reflecting optical waveguide in SiO2-Si multilayer structure”, Appl. Phys. Lett., vol. 49, pp. 13–15, 1986.CrossRefGoogle Scholar
  3. 3.
    M. Mann, U. Trutschel, C. Wächter, L. Leine, and F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide”, Opt. Lett., vol. 16, pp. 805–807, 1991.CrossRefGoogle Scholar
  4. 4.
    J. Gehler, A. Bräuer, and W. Karthe, “Remote coupling over 93mm using ARROW waveguides in strip configurations”, Electronic Lett. vol. 30, pp. 218–220, 1994.CrossRefGoogle Scholar
  5. 5.
    T. Baba, Y. Kokobun, and H. Watanabe, “Monolithic integration of an ARROW-type demultiplexer and photodetector in the shorter wavelength region”, J. Lightwave Techn. vol. 8, pp. 99–104, 1990.CrossRefGoogle Scholar
  6. 6.
    Z. M. Mao, and W. P. Huang, “An ARROW optical wavelength filter: Design and analysis”, J. Lightwave Techn., vol. 11, pp. 1183–1188, 1993.CrossRefGoogle Scholar
  7. 7.
    V. Delisle, U. Trutschel, M. A. Duguay, F. Lederer and L. Leine, “Antiresonant waveguide add/drop filter using Fabry-Pérot interference”, Opt. Comm., vol. 113, pp. 389–394, 1995.CrossRefGoogle Scholar
  8. 8.
    J. Gehler, A. Bräuer, W. Karthe, U. Trutschel, and M.A. Duguay, “ARROW-based optical wavelength in silica”, Electron. Lett, vol 31, pp. 547–548.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Vincent Delisle
    • 1
  • Udo Trutschel
    • 1
  • Hugues Tremblay
    • 1
  • Michel A. Duguay
    • 1
  • Falk Lederer
    • 2
  1. 1.Dept. of Electrical EngineeringLaval UniversitySainte-FoyCanada
  2. 2.Physikalische Astronomische Fakultät, Institut für Festkörperphysik und Theoretische OptikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations