Advertisement

Active Wavelength Measurement Systems Based on Quantum Well Electroabsorption Devices

  • T. Coroy
  • R. M. Measures

Abstract

An active wavelength measurement system based on the use of a mesa type semiconductor quantum well electroabsorption filtering detector has been demonstrated. This system is suitable for many applications, including the demodulation of intracore Bragg grating fiber optic sensors. Average wavelength resolutions of better than ±10 pm were achieved over a measurement range from 1555 to 1590 nm.

Keywords

Fiber Optic Sensor Narrow Linewidth Closed Loop Response Input Wavelength Bragg Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Measures, “Smart composite structures with embedded sensors,” Composites Engineering, Vol. 2, pp. 597–618 (1992).CrossRefGoogle Scholar
  2. 2.
    R. M. Measures, S. Melle and K. Liu, “Wavelength demodulated Bragg grating fiber optic sensing systems for addressing smart structure critical issues,” Smart Mater. Struct., Vol. 1, pp. 36–44(1992).CrossRefGoogle Scholar
  3. 3.
    S. M. Melle, K. Liu and R M Measures, “Strain sensing using a fiber optic Bragg grating,” Proc. SPIE, Vol. 1588, pp. 255–263 (1991).CrossRefGoogle Scholar
  4. 4.
    S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fibre laser strain sensor system,” IEEE Photon. Technol. Lett., Vol. 5, pp. 263–266 (1993).CrossRefGoogle Scholar
  5. 5.
    M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett., Vol. 30, pp. 75–77 (1994).CrossRefGoogle Scholar
  6. 6.
    T. Coroy and R.M. Measures, “Active wavelength demodulation for Bragg grating strain sensors,” Applications of Photonic Technology, Plenum Press, New York, pp. 343–347 (1995).Google Scholar
  7. 7.
    T. Coroy, P.J. Ellerbrock, R.M. Measures and J.H. Belk, “Active wavelength demodulation of Bragg fiber-optic strain sensor using acousto-optic tunable filter,” Electron. Lett., Vol. 31, pp. 1602–1603 (1995).CrossRefGoogle Scholar
  8. 8.
    M.G. Xu, H. Geiger, and J.P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol., Vol. 14, pp. 391–396 (1996).CrossRefGoogle Scholar
  9. 9.
    T.H. Wood, C.A. Burrus, A.H. Gnauck, J.M. Wiesenfeld, D.A.B. Miller, D.S. Chemla, and T.C. Damen, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett., Vol. 47, pp. 190–192 (1985).CrossRefGoogle Scholar
  10. 10.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, and C.A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B, Vol. 32, pp. 1043–1060 (1985).CrossRefGoogle Scholar
  11. 11.
    The conversion factor used is 1.20 pm/με, from Ref. 4.Google Scholar
  12. 12.
    T. Coroy and R.M. Measures, paper in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • T. Coroy
    • 1
  • R. M. Measures
    • 1
  1. 1.Institute for Aerospace StudiesUniversity of TorontoDownsviewCanada

Personalised recommendations