Advertisement

Ultrafast Reflectivity and Wave-Mixing Response of GaAs Fabry-Perot Microcavities

  • Rainer Buhleier
  • Jean Louis Iehl
  • Jacques Henri Collet
  • Véronique Bardinal
  • Chantal Fontaine
  • Martin Hübner
  • Jürgen Kuhl

Abstract

Fast digital processing is necessary to control the traffic of packets in optical networks, for instance for the operations of address recognition, routing, packet collision treatment, and demultiplexing1,2,3. So far, this treatment is achieved by an electronic layer which operates at ~1 GHz, but operations at several tens or even several hundreds of GHz will be needed in the near future. A typical example concerns demultiplexing in time division multiplexed busses for multiprocessor systems4 when the top bus throughput attains several hundreds of Gbit/s. Obviously, electronic circuits no longer work at this frequency so that the development of ultrafast optical gates has attracted a great deal of attention. However, the traffic control is so complicated and the processing capabilities of optical gates so limited that it seems unrealistic to consider replacing the electronic layer by an all-optical solution. A possible compromise might be to connect the electronic layer to the optical communication channels via a simple but ultrafast photonic interface that could be integrated in monolithic optical circuits.

Keywords

Diffraction Efficiency Saturable Absorber Round Trip Time Cavity Resonance Electronic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.R. Prucnal, IEEE J. Optically processed self-routing, synchronization and contention resolution for ID and 2D photonic architectures, Quantum Electronics QE-29:600 (1993); and references therein.CrossRefGoogle Scholar
  2. 2.
    Chunming Qiao, and Rami Meinem, Reconfiguration with Time Division Multiplexed MIN’s for multiprocessor communications, IEEE Trans. On Parallel and Distributed Systems 5:337, (1994).CrossRefGoogle Scholar
  3. 3.
    D.M. Chiarulli, S.P. Levitan, R.G. Melhem, M. Bidnurkar, R. Ditmore, G. Gravenstreter, Z. Guo, C. Qiao, M.F. Sakr, and J.P. Teza, Optoelectronic Busses for High-Performance Computing, Proceedings of IEEE. 82:1701–1710,(1994).CrossRefGoogle Scholar
  4. 4.
    L. Fesquet, J.H. Collet, Short Latency Optical Bus for Multiprocessor Architecture, see this conf. proceedings (ICAPT96).Google Scholar
  5. 5.
    D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources, Opt. Lett. 21:486 (1996).CrossRefGoogle Scholar
  6. 6.
    Y. Matsunaga, M. Tsuchiya, and T. Kamiya, Multiplexed output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave-mixing, Electron Lett. 30:1780 (1994).CrossRefGoogle Scholar
  7. 7.
    T. Yamamoto, T. Imai, T. Komukai, Y. Miyjima, and M. Nakazawa, All-optical time division multiplexing using four-wave-mixing », Electron. Lett. 31:744 (1995).CrossRefGoogle Scholar
  8. 8.
    V. Bardinal, R. Legros, C. Fontaine, Precision Bragg reflectors obtained by molecular beam epitaxy under in situ tunable dynamic reflectometry control, Appl. Phys. Lett. 67:3390 (1995).CrossRefGoogle Scholar
  9. 9.
    P. C. Becker, H. L. Fraginto, C. H. Brito Cruz, R. L. Fork, J. E. Cunningham, J. E. Henry, and C. V. Shank, Femtosecond Photon Echoes from Band-to-Band Transitions in GaAs, Phys. Rev. Lett. 61:1757 (1988).Google Scholar
  10. 10.
    J. H. Collet, R. Buhleier, and J. O. White, Enhanced diffraction of light in GaAs microcavities, J. Opt. Soc. Am. B13:2439 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Rainer Buhleier
    • 1
  • Jean Louis Iehl
    • 1
  • Jacques Henri Collet
    • 1
  • Véronique Bardinal
    • 1
  • Chantal Fontaine
    • 1
  • Martin Hübner
    • 2
  • Jürgen Kuhl
    • 2
  1. 1.Laboratoire d’Analyse et d’ArchitectureSystèmes du CNRSToulouse CedexFrance
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations