Advertisement

Holographic Mirrors for Laser Mode Control

  • Reza Massudi
  • Jean-François Lepage
  • Geneviève Anctil
  • Sébastien Gilbert
  • Damien Stryckman
  • Nathalie McCarthy
  • Michel Piché

Abstract

We describe the fabrication of variable reflectivity gratings by an holographic technique and the use of such components as mode selectors in lasers. Gratings with a spatially variable reflectivity profile are produced by the interference of two Gaussian beams on a photoresist material deposited on glass. The gratings have been tested with a Nd: YAG laser and a broad-area semiconductor laser; the beam shape and the modal content of the lasers were improved when the gratings were used as output couplers.

Keywords

Gaussian Beam Output Coupler Diffraction Efficiency External Cavity Reflectivity Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Siegman. Unstable optical resonators for laser applications, Proc. IEEE 53, 277–287 (1965).Google Scholar
  2. 2.
    A. E. Siegman. Lasers, University Science Books, Mill Valley (1986).Google Scholar
  3. 3.
    N. McCarthy and P. Lavigne. Large-size Gaussian mode in unstable resonators using Gaussian mirrors, Opt. Lett. 10, 553–555 (1985).CrossRefGoogle Scholar
  4. 4.
    K. J. Snell, N. McCarthy, P. Lavigne and M. Piché, Single transverse mode oscillation from an unstable resonator Nd.YAG laser using a variable reflectivity mirror, Opt. Commun. 65, 377–382 (1988).CrossRefGoogle Scholar
  5. 5.
    S. DeSilvestri, V. Magni, O. Svelto and G. Valentini, Lasers with super-Gaussianmirrors, IEEE J. Quantum Electron. OE-26. 1500–1509 (1990).CrossRefGoogle Scholar
  6. 6.
    C. Budzinski, R. Grunwald, I. Pinz, D. Schafer and Schonnagel, Apodized outcouplers for unstable resonators, Proc. SPIE 1500, 264–274 (1991).CrossRefGoogle Scholar
  7. 7.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, chapter 9. Dover, New York (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Reza Massudi
    • 1
  • Jean-François Lepage
    • 1
  • Geneviève Anctil
    • 1
  • Sébastien Gilbert
    • 1
  • Damien Stryckman
    • 1
  • Nathalie McCarthy
    • 1
  • Michel Piché
    • 1
  1. 1.Department of Physics, COPLUniversité LavalCité UniversitaireCanada

Personalised recommendations