Advertisement

A Critical Review of Fiber-Optic Based Smart Structures

  • Kexing Liu

Abstract

The concept of smart materials and structures has been developed for more than a decade (Rowe, 1986; Measures, 1989; Sendeckyj and Paul, 1991; Spillman, Jr. et al, 1996). It mainly concerns the intelligent and effective control of the behaviour or the property of a given mechanical structure. A basic smart structural system must consists of sensors, actuators, control electronics and the structure itself. Such a system will require high-performance sensors to provide in-situ, real-time and precision measurement.

Keywords

Host Material Smart Material Strain Sensor Smart Structure Transverse Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, X., Dhilwayo, J., Heron, N., Webb, D.J., and Jackson, D.A., 22km distributed strain senor using Brillouin loss in an optical fibre, Opt. Commu., 104: 298, (1994).CrossRefGoogle Scholar
  2. Belleville, C. and Duplain, G., White-light interferometric multi-mode fiber-optic strain sensor, Opt. Lett., 18: 78 (1993).CrossRefGoogle Scholar
  3. Butter, C.D., and Hocker, G.B., Fiber optics strain gauge, Appl. Opt., 17: 2867, (1978).CrossRefGoogle Scholar
  4. Calero, J., Wu, S.-P., Pope, C., Chung, S.L., Murtha, J.P., Theory and experiments on birefringent optical fibres embedded in concrete structures, J. of Light. Tech., 12: 1081,(1994).CrossRefGoogle Scholar
  5. Claus, R., Crotts, R., Murphy, K., Dahlgren, R., Tran, T., and Poland, S., Performance of miniaturized optical fiber interconnects between sensor-embedded composite panels, Proc. SPIE, 2072: 226, (1994).CrossRefGoogle Scholar
  6. Eaton, N.C., Drew, R.C., and Geiger, H., Finite element stress and strain analysis on composites with embedded optical fibre sensors, Smart Materials and Structures (IOP Journal), 4: 113, (1995).CrossRefGoogle Scholar
  7. Esprit Technology Inc., Technical Note, (1990)Google Scholar
  8. Giallorenzi, T.G., NATO ASI Series E: Applied Sciences 132, Optical Fiber Sensors, 35, (1987).Google Scholar
  9. LeBlanc, M., and Measures, R.M., Micromechanical considerations for embedded single-ended sensors, UTIAS Publications, (1994).Google Scholar
  10. Lisboa, O., Soda, H., Jen, C.-K., Motoyasu, G., and Clean, A., Thick aluminium-coated optical fibres: fabrication and sensor applications, Smart Materials and Structures (IOP Journal), 5: 187, (1996).CrossRefGoogle Scholar
  11. Liu, K., and Measures, R.M., Detection of high frequency strain waves with ordinary single-mode optical fibres, Proc. SPIE, 1584: 226, (1991).CrossRefGoogle Scholar
  12. Liu, K. and Measures, R.M., Signal demodulation techniques for localised interferometric strain sensors, Journal of Intelligent Material Structures and Systems, 3: 432, (1992).CrossRefGoogle Scholar
  13. Liu, K., Melle, S., and Measures, R.M., Signal processing techniques for fiber-optic strain sensors, Proc. 2nd IEEE Int. Workshop on Photonic Networks, Components, and Applications, Montebello, Quebec, March, 1992, p. 241, (1992).Google Scholar
  14. Liu, K., and Measures, R.M., Analysis of macro-strain transfer and complete strain state measurement with embedded fiber-optic sensors, Smart Materials and Structures (IOP Journal), 2: 66, (1993).CrossRefGoogle Scholar
  15. Lo, Y.L., Sirkis, J.S., and Ritchie, K.T., A study of the mechanical response of a diametrically loaded hi-bi optical fiber, Smart Materials and Structures (IOP Journal), 4: 327, (1995).CrossRefGoogle Scholar
  16. Lu, Z.J., and Blaha, F.A., Application issues of fiber-optic sensors in aircraft structures, Proc. SPIE, 1588: 276, (1991).CrossRefGoogle Scholar
  17. Lu, Z.J., Extrinsic fibre optic strain sensor, US Patent 5345519, (1994).Google Scholar
  18. Maaskant, R., Alavie, T., Measures, R.M., Tadros, G., Rizkalla, S., Guha-Thakurta, A., Fiber-optic Bragg grating sensing for bridge monitoring, Cement and Concrete Composite, Special Issue, (1996, in print).Google Scholar
  19. Measures, R.M., Smart Structures with nerves of glass, Prog. Aerospace Sci. 26: 289, (1989).CrossRefGoogle Scholar
  20. Measures, R.M., Fiber-Optic Sensor Considerations and Developments for Smart Structures, Proc. SPIE. 1588: 282, (1991).CrossRefGoogle Scholar
  21. Measures, R.M., Smart structures……A revolution in civil engineering, Keynote Address, ACMBA International Conference, Sherbrooke, Oct. 1992, (1992).Google Scholar
  22. Melle, S., Liu, K., and Measures, R.M., A passive wavelength demodulation system for guided-wave Bragg grating sensors, IEEE Photo. Techn. Lett., 4: 516, (1992).CrossRefGoogle Scholar
  23. Morgan, R.E., Ehlers, S.L., and Jones, K.J., Composite-embedded fiber-optic data links and related material / connector issues, Proc. SPIE, 1588: 189, (1991).CrossRefGoogle Scholar
  24. Morin, A, Caron, S., Van Neste, R., and Edgecome, M.H., Field monitoring of the icebreaker propeller blade using fiber optic strain gauges, Proc. SPIE, 2718: 49, (1996).Google Scholar
  25. Rowe, W. J., Prospects for intelligent aerospace structures, Paper AIAA-86–1139, AIAA-AOLE 2nd Aerospace Maintenance Conference, May 1986, (1986).Google Scholar
  26. Sendeckyj, G.P., and Paul, C.A., Some smart structure concepts, Proc. SPIE, 1170: 2, (1989).CrossRefGoogle Scholar
  27. Singh, H. and Sirkis, J.S., Micromechanical analysis of thick composites with embedded optical fibres, Proc. SPIE, 1917: 299, (1993).CrossRefGoogle Scholar
  28. Sirkis, J.S. and Haslach, Jr., H.W., Complete phase-strain model for structurally embedded interferometric optical fiber sensors, J. of Intell. Mater. Syst. and Struct. 2: 3, (1991).CrossRefGoogle Scholar
  29. Sirkis, J.S., Berkoff, T.A., Jones, R.T., Singh, A.D., Kersey, A.D., Friebele, E.J., and Putnam, M.A., In-line fiber etalon (ilfe) fiber-optic strain sensor, J. of Light. Techn., 13: 1256, (1995).CrossRefGoogle Scholar
  30. Tay, A., Wilson, D.A., and Wood, L., Strain analysis of optical fibres embedded in composite materials using finite element modelling, Proc. SPIE 1170: 521, (1989).Google Scholar
  31. Valis, T., Hogg, W.D., and Measures, R.M., Thermal apparent-strain sensitivity of surface- adhered, fibre-optic strain gauges, Appl. Optic, 31: 7178, (1992).CrossRefGoogle Scholar
  32. Wolfgang, R.H., Hopacke, M., Basedau, F., and Polster, H. the Influence of concrete and alkaline solutions on different surfaces of optical fibers for sensors, Proc. 2nd Euro. Conf on Smart Struc and Mater., Glasgow, 1994, p. 168, (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kexing Liu
    • 1
  1. 1.Canadian Marconi CompanyVille Saint-LaurentCanada

Personalised recommendations