Semiconductor Laser Overview

  • Richard Murison


A very brief overview is given of the large and wide-ranging field of semiconductor laser diodes, in the context of the development of the field from its earliest days. The key issues are described, and the interested reader is invited to consult the references cited for more thorough treatments. Following the first theoretical discussions, and practical demonstrations, of lasing in semiconductors in the early 1960s, it took over ten years before lasers could be fabricated with remotely useful levels of performance. By the early 1980s, however, materials and technology had progressed at a phenomenal pace to the point where semiconductor lasers were employed at the heart of the Compact Disc players which came to dominate consumer audio, optical fiber communications links which now route virtually all of the world’s telephone trunk lines, and laser printers which have displaced mechanical printers from all but the lowest cost end of the market. Semiconductor lasers in the 1990s are expanding into new materials systems, exploiting mechanical strain as a design feature, and being implemented in many new device topologies. Despite these phenomenal successes, semiconductor lasers in particular, and photonics technology in general, still remain to be widely exploited.


Semiconductor Laser Threshold Current Distribute Bragg Reflector Active Layer Thickness Quasi Fermi Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Basovet al, Sov. Phys. JETP, 13, p1320 (1961)Google Scholar
  2. 2.
    M. G. A. Bernard and G. Duraffourg, Phys. Status Solidi, 1, p699 (1961)CrossRefGoogle Scholar
  3. 3.
    W. W. Anderson, IEEE,JQE,1, 6, p228, (1965)CrossRefGoogle Scholar
  4. 4.
    G. H. B. Thompsonet al, J. Appl. Phys., 47, 4, p1501 (1976)CrossRefGoogle Scholar
  5. 5.
    S. W. Corzineet al, Chapter 1 in Ref. 8Google Scholar
  6. 6.
    R. Dingleet al, Phys. Rev. Lett., 33, p827 (1974)CrossRefGoogle Scholar
  7. 7.
    W. T. Tsang, Appl. Phys. Lett., 40, p217 (1982)CrossRefGoogle Scholar
  8. 8.
    “Quantum Well Lasers”, Peter S. Zory jr. (Ed.), Academic Press (San Diego CA), (1993)Google Scholar
  9. 9.
    J. W. Matthews and A. E. Blakeslee, J. Crystal Growth, 27, p118 (1974)Google Scholar
  10. 10.
    W. D. Laidiget al, Appl. Phys. Lett., 44, p653, (1984)CrossRefGoogle Scholar
  11. 11.
    S. E. Fischeret al, Appl. Phys. Lett., 54, p1861, (1989)CrossRefGoogle Scholar
  12. 12.
    A. R. Adams, Electron. Lett., 22, p249, (1986)CrossRefGoogle Scholar
  13. 13.
    E. Yablonovitch and E. O. Kane, IEEE-JLT 4, p504, (1986)Google Scholar
  14. 14.
    R. N. Hallet al, Phys. Rev. Lett., 9, p366, (1962)CrossRefGoogle Scholar
  15. 15.
    M. I. Nathanet al, Appl. Phys. Lett., 1, p62, (1962)CrossRefGoogle Scholar
  16. 16.
    T. M. Quistet al, Appl. Phys. Lett., 1, p91, (1962)CrossRefGoogle Scholar
  17. 17.
    N. Holonyak jr. and S. F. Bevacqua, Appl. Phys. Lett., 1, p82, (1962)CrossRefGoogle Scholar
  18. 18.
    H. Kroemer, Proc. IEEE, 51, p1782, (1963)CrossRefGoogle Scholar
  19. 19.
    Z. I. Alferov and R. F. Kazarinov, Author’s certificate 1032155/26–25, USSR, (1963)Google Scholar
  20. 20.
    I. Hayashiet al, Appl. Phys. Lett., 17, p109, (1970)CrossRefGoogle Scholar
  21. 21.
    Z. I. Alferovet al, Fiz. Tekh. Polupov, 4, p1826, (1970)Google Scholar
  22. 22.
    K. Oeet al, Jpn. J. Appl. Phys., 16, p1273 (1977)CrossRefGoogle Scholar
  23. 23.
    G. D. Henshall and P. D. Greene, Electron. Lett., 15, p621, (1979)CrossRefGoogle Scholar
  24. 24.
    P. K. Runge and P. R. Trischitta, IEEE-JLT 2, p744, (1984)Google Scholar
  25. 25.
    D. Z. Garbuzovet al, IEEE-JQE 27, 6, p1531, (1991)CrossRefGoogle Scholar
  26. 26.
    J. E. Ripperet al, Appl. Phys. Lett., 18, p155, (1971)CrossRefGoogle Scholar
  27. 27.
    “Semiconductor lasers and heterojunction LEDs”, H. Kressel and J. K. Butler, Academic Press (New York, NY), (1977)Google Scholar
  28. 28.
    "Heterostructure Lasers", Parts A & B, H. C. Casey jr., and M. B. Panish, Academic Press (New York, NY), (1978)Google Scholar
  29. 29.
    "Physics of semiconductor laser devices", G. H. B. Thompson, John Wiley & Sons (Chichester, UK), (1980Google Scholar
  30. 30.
    I. P. Kaminowet al, Electron. Lett., 15, p763, (1980)CrossRefGoogle Scholar
  31. 31.
    T. Tasukada, J. Appl. Phys., 45, p4899, (1974)CrossRefGoogle Scholar
  32. 32.
    W. Tsang and S. Wang, Appl. Phys. Lett., 28, p596, (1976)CrossRefGoogle Scholar
  33. 33.
    H. Kogelnik and C. V. Shank, Appl. Phys. Lett., 18, p152, (1971)CrossRefGoogle Scholar
  34. 34.
    G. A. Evanset al, IEEE-JQE 25, p1525, (1989)CrossRefGoogle Scholar
  35. 35.
    M. Jansenet al, Proc. SPIE, Vol 1418, p32, (1991)CrossRefGoogle Scholar
  36. 36.
    D. Botez and D. E. Ackley, IEEE Circ. & Devices Mag., 2, p8, (1986)CrossRefGoogle Scholar
  37. 37.
    N. K. Dutta and P. P. Deimel, IEEE-JQE 19, p496, (1983)CrossRefGoogle Scholar
  38. 38.
    D. F. Welchet al, Proc. LEOS ’93, San Jose CA, paper SCL1.2, (1993)Google Scholar
  39. 39.
    D. B. Younget al, IEEE-PTL 5, p129, (1993)CrossRefGoogle Scholar
  40. 40.
    K. Uomiet al, IEEE-PTL 6, p317, (1994)CrossRefGoogle Scholar
  41. 41.
    R. P. Schneideret al, IEEE-PTL 6, p313, (1994)CrossRefGoogle Scholar
  42. 42.
    J. B. D. Sooleat al, Appl. Phys. Lett., 61, p2750, (1992)CrossRefGoogle Scholar
  43. 43.
    M. Fallahiet al, IEEE-PTL 5, p794, (1993)CrossRefGoogle Scholar
  44. 44.
    K. M. Dzurkoet al, Appl. Phys. Lett., 61, p2389, (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard Murison
    • 1
  1. 1.EG&G Optoelectronics CanadaVaudreuilCanada

Personalised recommendations