Advertisement

Laser Diode Frequency Control for Multiwavelength (WDM) Optical Communications

  • M. Têtu
  • B. Villeneuve
  • C. Gamache
  • M. Guy
  • C. Paquet
  • C. Latrasse
  • M. Poulin
  • M. Breton
  • P. Tremblay

Abstract

The simultaneous use of many wavelengths will increase the throughput of point to point optical communication systems and lead to the development of networks where the routing is achieved using the wavelength values as the keys for identification.1 For relatively dense systems, the laser wavelengths will have to be controlled precisely to avoid crosstalks or wrong identification. In this work, two distinct approaches are considered to set and to maintain the wavelength of an ensemble of laser sources in the 1.5 um region.

Keywords

Laser Frequency Optical Resonator Transmitter Laser Wavelength Division Multiplex Network Characterization Of87 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Brackett, “Dense wavelength division multiplexing networks : principles and applications”, IEEE J. Selected Areas Comm, vol 8, n° 6, 1990.CrossRefGoogle Scholar
  2. 2.
    R. Boucher, B. Villeneuve, M. Têtu, M. Breton, “Calibrated Fabry-Perot etalon as an absolute frequency reference for OFDM communications”, IEEE Photon. Technol. Letters, Vol. 4, No. 7, July 1992.Google Scholar
  3. 3.
    M. Têtu, N. Cyr, C. Gamache, R. Boucher, M. Breton, P. Tremblay, “Ensemble of laser sources with evenly spaced absolute frequencies for optical division multiplexed systems”, SPIE, Proc. 1837, paper 29, Boston, 1992.Google Scholar
  4. 4.
    B. Villeneuve, R. Boucher, M. Têtu, M. Breton, “Frequency stabilization of multiple transmitters and receivers in OFDM networks”, Photonics’92, pp. 3.17.1 – 3.17.6, Ottawa, Ontario, 1992.Google Scholar
  5. 5.
    F. Matera, M. Settembre, “Exploitation of fiber bandwidth in links with optical amplifiers”, paper ThC2, Technical Digest OFC’94, San Jose, CA, 1994.Google Scholar
  6. 6.
    M. Guy, M. Têtu, B. Villeneuve, M. Svilans, “Optical frequency measurement for multichannel network using sum-frequency generation in multilayer waveguides”, Electron. Letters, Vol.29, No.l 1, May 27, 1993. pp.975–976.Google Scholar
  7. 7.
    R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, “Monolithic, surface-emitting, semiconductor”, IEEE J. Quant. Electron., vol 27, no. 6, 1991f.CrossRefGoogle Scholar
  8. 8.
    D. Vakshoori, S. Wang, “Integrable semiconductor optical correlator, parametric spectrometer for communication systems”, J. Ligthwave Technol., Vol. 9, No. 7, 1991.CrossRefGoogle Scholar
  9. 9.
    M. Guy, M. Têtu, B. Villeneuve, M. Svilans, “Optical frequency control for DWDM networks using sum-frequency generation in multilayer waveguides”, Photon. Tech. Letters, Vol. 6, No. 3, March 1994.Google Scholar
  10. 10.
    M. Guy, M. Têtu, C. Latrasse, B. Villeneuve, M. Svilans, “Laser optical frequency control at 1.33 and 1.55 µm by using a non linear multilayer semiconductor waveguide”, Technical Digests, Conference on Lasers and Electro-Optics, paper CTh A6, Anaheim, Ca. May 1994.Google Scholar
  11. 11.
    U.C. Latrasse, M. Têtu, M. Breton, N. Cyr, R. Roberge, “C2HD absorption lines in the vicinity of 1529 nm for frequency-locking”, Techn. Digest OSA Annual Meeting, MS2, Toronto, Canada, September 1993,Google Scholar
  12. 12.
    M. Breton, P. Tremblay, N. Cyr, C. Julien, M. Têtu , “Observation and characterization of87Rbresonances for frequency locking purpose of a 1.53 µm DFB laser”, SPIE Proc. on Frequency-stabilized lasers and their applications, 1837, 1992s.Google Scholar
  13. 13.
    M. Têtu, B. Villeneuve, N. Cyr, P. Tremblay, S. Thériault, M. Breton. “Multiwavelength sources using laser diodes frequency-locked to atomic resonances”, IEEE J. Lightwave Technol., Vol. 7, No. 10, 1989.CrossRefGoogle Scholar
  14. 14.
    M. Poulin, C. Latrasse, M. Têtu , M. Breton, “Second harmonic generation of a 1560 nm DFB laser using a KNbO3 crystal for frequency-locking to the 87Rb-D2 line at 780 nm”, to be published, Optics Letters.Google Scholar
  15. 15.
    D. W. Allan, “Statistics of atomic frequency standards”, Proc. IEEE, vol 54, n°2, 1966.Google Scholar
  16. 16.
    J. Barnes et al, “Characterization of frequency stability”, IEEE Trans. Instrum. Meas., vol IM-20,n°2, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Têtu
    • 1
  • B. Villeneuve
    • 2
  • C. Gamache
    • 1
  • M. Guy
    • 1
  • C. Paquet
    • 1
  • C. Latrasse
    • 1
  • M. Poulin
    • 1
  • M. Breton
    • 1
  • P. Tremblay
    • 1
  1. 1.Centre d’optique, photonique et lasers (COPL), Département de génie électriqueUniversité LavalSte-FoyCanada
  2. 2.Advanced Technology LaboratoryBell-Northern ResearchOttawaCanada

Personalised recommendations