Skip to main content

The Wavelength-Dependent Refractive Index Change Associated with the Blue to Pink Membrane Photochemical Conversion in Bacteriorhodopsin

  • Chapter
Applications of Photonic Technology

Abstract

Bacteriorhodopsin (BR) is the photosynthetic protein found in the cell membrane of the bacterium Halobacterium salinarium.1,2 This microorganism thrives in salt brines where the concentration of sodium chloride is roughly four times greater than ocean water. BR’s biological function derives from its unique light-transducing properties whereby the absorption of a photon results in the pumping of a proton from the bacterium’s cytoplasm to its surrounding environment. This action establishes an electrochemical potential which the bacterium harnesses to synthesize metabolic adenosine triphosphate. During the past several decades much has been learned about bacteriorhodopsin’s photochemical and biophysical properties, and the molecular events associated with proton pumping.3–5 More recently, several groups have demonstrated BR’s efficacy as a new type of optical recording material useful in photonic applications that include real-time holography,6, 7 interferometry,8 spatial light modulation,9, 10 and long term optical data storage.11–13 All of the latter exploit BR’s inherent property of photochromism whereby a material under proper illumination reversibly changes its optical transmission properties.14 Although numerous synthetic photochromes have been reported over the last century, few offer the intrinsic advantages found in BR. These include high light sensitivity in both the forward and reverse directions (large quantum yield), freedom from photodegradation, and the ability to tailor the photochromic properties of the protein through genetic manipulation of the native protein15, 2, or through the action of external agents such as chemical compounds,16, 17 humidity, pH,11 or ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. R. Birge. Photophysics and molecular electronic applications of the rhodopsins. Annu. Rev. Phys. Chem. 41:683–733. (1990).

    Article  Google Scholar 

  2. D. Oesterhelt, C. Brauchle and N. Hampp. Bacteriorhodopsin: a biological material for information processing. Quart. Rev. Biophys. 24: 425–478. (1991).

    Article  Google Scholar 

  3. R. A. Mathies, J. Lugtenburg and C. V. Shank. From femtoseconds to biology: mechanism of the light-driven proton pump in bacteriorhodopsin. SPIE (Biomolecular Spectroscopy) 1057: 138–145. (1989).

    Article  Google Scholar 

  4. R. R. Birge. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016: 293–327. (1990).

    Article  Google Scholar 

  5. R. Henderson, F. R. S. Schertler and G. R. X. Schertler. The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Phil. Trans. R. Soc. Lond. B. 326: 379–389. (1990).

    Article  Google Scholar 

  6. N. Hampp, A. Popp, C. Brauchle and D. Oesterhelt. Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRwt and its variants BRD85E and BRD96N. J. Phys. Chem. 96: 4679–4685. (1992).

    Article  Google Scholar 

  7. R. Thoma and N. Hampp. Real-time holographic correlation of two video signals by using bacteriorhodopsin films. Opt. Lett. 17: 1158–1160. (1992).

    Article  Google Scholar 

  8. T. Renner and N. Hampp. Bacteriorhodopsin-films for dynamic time average interferometry. Opt. Comm. 96: 142–149.(1992).

    Article  Google Scholar 

  9. R. Thoma, N. Hampp, C. Bräuchle and D. Oesterhelt. Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering. Opt. Lett. 16: 651–653. (1991).

    Article  Google Scholar 

  10. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen and R. R. Birge. Chemically enhanced bacteriorhodopsin spatial light modulator. Opt. Lett. 18: 1373–1375. (1993).

    Article  Google Scholar 

  11. Z. Chen, A. Lewis, H. Takei and I. Nabenzahl. Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium. Appl. Opt. 30: 5188–5196. (1991).

    Article  Google Scholar 

  12. R. R. Birge. Protein based optical computing and optical memories. IEEE Computer 25: 56–67. (1992).

    Article  Google Scholar 

  13. A. Popp, M. Wolperdinger, N. Hampp, C. Brauchle and D. Oesterhelt. Photochemical conversion of the O-intermediate to 9-c/s-retinal containing products in bacteriorhodopsin films. Biophys. J. 65: 1449–1459. (1993).

    Article  Google Scholar 

  14. H. Durr and H. Bouas-Laurent. (1990). Photochromism: Molecules and Systems. Studies in Organic Chemistry. 40: 1068.

    Google Scholar 

  15. C. Brauchle, N. Hampp and D. Oesterhelt. Optical applications of bacteriorhodopsin and its mutated variants. Adv. Mater. 3: 420–428. (1991).

    Article  Google Scholar 

  16. M. Yoshida, K. Ohno, Y. Takeuchi and Y. Kagawa. Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride. Biochem. Biophys. Res. Comm. 75: 1111–1116.(1977).

    Article  Google Scholar 

  17. N. N. Vsevolodov and V. A. Poltoratsky. Holograms on “Biochrome” a biological photochromic material. Zh. Tekh. Fiz. 55: 2093–2094. (1985).

    Google Scholar 

  18. C. H. Chang, J. G. Chen, R. Govindjee and T. Ebrey. Cation binding by bacteriorhodopsin. Proc. Natl. Acad. Sei. USA 82: 396–400. (1985).

    Article  Google Scholar 

  19. C. H. Chang, S. Y. Liu, R. Jonas and R. Govindjee. The Pink Membrane: The stable photoproduct of deionized purple membrane. Biophys. J. 52: 617–623. (1987).

    Article  Google Scholar 

  20. R. B. Gross, K. C. Izgi and R. R. Birge. Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin. SPIE Image Storage and Retrieval Systems 1662: 186–196.(1992).

    Article  Google Scholar 

  21. D. Zeisel and N. Hampp. Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRwt and the variant BRD96N. J. Phys. Chem. 96: 7788–7792. (1992).

    Article  Google Scholar 

  22. E. Hecht. “Optics,” Addison-Wesley, Menlo Park (1987).

    Google Scholar 

  23. R. Loudon. “The quantum theory of light,” Clarendon, Oxford (1973).

    Google Scholar 

  24. C. J. G. Kirkby and I. Bennion. Organic photochromies for spatial light modulation. IEE Procs. 133: 98–104.(1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gross, R.B., Todorov, A.T., Birge, R.R. (1995). The Wavelength-Dependent Refractive Index Change Associated with the Blue to Pink Membrane Photochemical Conversion in Bacteriorhodopsin. In: Lampropoulos, G.A., Chrostowski, J., Measures, R.M. (eds) Applications of Photonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9247-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9247-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9249-2

  • Online ISBN: 978-1-4757-9247-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics