Advertisement

Intense Laser Interactions: Higher Order Resonances and Hot Electrons

  • L. D. Van Woerkom
  • S. Evans
  • P. Hansch
  • M. A. Walker

Abstract

The kinetic energy spectrum of electrons produced by multiphoton and above threshold ionization of atoms has been studied in detail for nearly two decades. Much has been learned about the mechanisms behind the gross and fine structures present in these spectra over a wide range of experimental conditions. Theoretical models ranging from very simple and semiclassical to sophisticated quantum treatments have been developed to explain a great deal of the phenomena observed in experiments.

Keywords

Laser Intensity Photoelectron Spectrum Rydberg State High Kinetic Energy Kinetic Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    The ponderomotive energy Up is defined in atomic units as Ú4w2, where I and w are the laser intensity and frequency, respectively. For 800 nm photons, Up = 5.98 eV at 1014 W/cm2 Google Scholar
  2. [2]
    P. Hansch and L. D. Van Woerkom, Opt. Lett. 21, 1286 (1996).ADSCrossRefGoogle Scholar
  3. [3]
    H. B. van Linden van den Heuvell and H. G. Muller, Eds., Studies in Modern Optics No 8, Multiphoton Processes ( Cambridge University Press, Cambridge, 1988 ).Google Scholar
  4. [4]
    T. F. Gallagher, Phys. Rev. Lett. 61, 2304 (1988).CrossRefGoogle Scholar
  5. [5]
    P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).ADSCrossRefGoogle Scholar
  6. [6]
    H. Helm and M. J. Dyer, Phys. Rev. A 49, 2726 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    M. D. Perry, A. Szöke and K. C. Kulander, Phys. Rev. Lett. 63, 1058 (1989).ADSCrossRefGoogle Scholar
  8. [8].
    R. R. Freeman, et al., Phys. Rev. Lett. 59 1092 (1987).Google Scholar
  9. [9]
    M. Dörr and R. Shakeshaft, Phys. Rev. A 38, 543 (1988).ADSCrossRefGoogle Scholar
  10. [10]
    M. Dörr, R. M. Potvliege and R. Shakeshaft, JOSA B 7, 433 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    G. N. Gibson, R. R. Freeman and T. J. Mcllrath, Phys. Rev. Lett. 69 1904 (1992).Google Scholar
  12. [12]
    G. G. Paulus, et al., Phys. Rev. Lett. 72 2851 (1994).Google Scholar
  13. [13]
    B. Walker, B. Sheehy, K. C. Kulander and L. F. DiMauro, Phys. Rev. Lett. 77, 5031 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    B. Walker, et al., Phys. Rev. Lett. 73 1227 (1994).Google Scholar
  15. [15]
    B. Yang, et al., Phys. Rev. Lett. 71 3770 (1993).Google Scholar
  16. [16]
    G. G. Paulus, W. Becker, W. Nicklich and H. Walther, J. Phys. B 27, L703 (1994).ADSCrossRefGoogle Scholar
  17. [17]
    K. J. Schafer, B. Yang, L. F. DiMauro and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    M. P. Hertlein, P. H. Bucksbaum and H. G. Muller, J. Phys. B 30, L197 (1997).ADSCrossRefGoogle Scholar
  19. [19]
    P. H. Bucksbaum, A. Sanpera and M. Lewenstein, J. Phys. B 30, L843 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • L. D. Van Woerkom
    • 1
  • S. Evans
    • 1
  • P. Hansch
    • 1
  • M. A. Walker
    • 1
  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations