Electron Dynamics in the Strong Field Limit of Photoionization

  • B. Sheehy
  • B. Walker
  • R. Lafon
  • M. Widmer
  • L. F. Dimauro
  • P. Agostini
  • K. C. Kulander


High precision photoelectron energy and angular distributions in helium and neon atoms for a broad intensity range reflect the change in the continuum dynamics that occurs as the ionization process evolves into the pure tunneling regime. Elastic rescattering of the laser-driven free electron from its parent ion core leaves a distinct signature on the spectra, providing a direct quantitative test of the various theories of strong field multiphoton ionization. We show that it takes a relatively complete semi-classical rescattering model to accurately reproduce the observed photoelectron distributions. However, the calculated inelastic rescattering rate fails to reproduce the measured nonsequential double ionization yields.


Angular Distribution Wave Packet Laser Field Double Ionization Neon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review, see DiMauro L F and Agostini P 1995 Advances in Atomic, Molecular, and Optical Physics 95 Bederson B and Walther H, Eds. (San Diego: Academic Press )Google Scholar
  2. 2.
    Keldysh L V 1965 Sov. Phys. JETP 20 1307–1311MathSciNetGoogle Scholar
  3. 3.
    Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259–1262ADSCrossRefGoogle Scholar
  4. 4.
    Mohideen U, Sher M H, Tom H W K, Aumiller G D, Wood II 0 R, Freeman R R, Bokor J and Bucksbaum P H 1993 Phys. Rev. Lett. 71 509–512Google Scholar
  5. 5.
    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227–1230Google Scholar
  6. 6.
    Yang B, Schafer K J,Walker B, Kulander K C, Agostini P and DiMauro L F 1993 Phys. Rev. Lett. 71 3770–3773Google Scholar
  7. 7.
    Paulus G G, Becker W, Nicklich W and Walther H 1994 J. Phys. B: At. Mol. Phys. 27 L703 — L708ADSCrossRefGoogle Scholar
  8. 8.
    Schafer K J Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599–1602Google Scholar
  9. 9.
    Corkum P B 1993 Phys. Rev. Lett. 71 1994–1997ADSCrossRefGoogle Scholar
  10. 10.
    Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A51 1495–1507Google Scholar
  11. 11.
    Schiff L I 1968 Quantum Mechanics ( New York: McGraw Hill )Google Scholar
  12. 12.
    Ammosov M V, Delone N B and Krainov V P 1986 Soy. Phys. JETP 64 1191–1997Google Scholar
  13. 13.
    Lotz W 1968 Z. Phys. 216 241–247ADSCrossRefGoogle Scholar
  14. Kulander K C, Cooper J and Schafer K J 1995 Phys. Rev. A51 561–568Google Scholar
  15. 15.
    L’Huillier A and Balcou P 1993 Phys. Rev. Lett. 70 774–777ADSCrossRefGoogle Scholar
  16. 16.
    Fittinghoff D, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642–2645ADSCrossRefGoogle Scholar
  17. 17.
    Becker A and Faisal F H M 1996 J. Phys. B: At. Mol. Phys. 29 L197 — L202ADSCrossRefGoogle Scholar
  18. 18.
    Watson J B, Sanpera A, Lappas D G, Knight P L and Burnett K 1996 Proceedings of ICOMP VII (Bristol: IOP)Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • B. Sheehy
    • 1
  • B. Walker
    • 1
  • R. Lafon
    • 1
  • M. Widmer
    • 1
  • L. F. Dimauro
    • 1
  • P. Agostini
    • 2
  • K. C. Kulander
    • 3
  1. 1.Department of ChemistryBrookhaven National LaboratoryUptonUSA
  2. 2.Service des Photons, Atomes et MoléculesCentre d’Etudes de SaclayGif Sur YvetteFrance
  3. 3.Lawrence Livermore National LaboratoryTAMP GroupLivermoreUSA

Personalised recommendations