Multiterawatt Ultraviolet Lasers

  • Fiorenzo G. Omenetto
  • Keith Boyer
  • Tom Nelson
  • James W. Longworth
  • W. A. Schroeder
  • C. K. Rhodes


The advances in ultrashort pulse generation and chirped pulse amplification (CPA) techniques have been the driving force in the development of laser systems with peak powers at and beyond the Terawatt (1012 W) level1–7. Most high power systems developed to date, work in the infrafed, and Terawatt and Petawatt (1015 W) class lasers have been demonstrated in Ti:Sapphire, Nd:glass and Cr:LISAF based systems. These systems are moving towards shorter pulse durations, now commonly of the order of tens of femtoseconds, and design goals are heading towards high repetition rate (kHz)8 multiterawatt systems. The progress in this field has certainly been inspired by the improvements in solid-state laser materials for ultrashort pulse generation. An analogous statement does not generally hold, however, for the ultraviolet wavelengths.


Amplify Spontaneous Emission Short Pulse Duration Optic Letter Chirp Pulse Amplification Sapphire Oscillator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ditmire, T. and Perry M., Optics Letters, 18 (6), 426 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Barty, C. P. J., Guo, T., LeBlanc, C., Raksi, F., Rose-Petruck, C., Squier, J., Wilson, K. R., Yakolev, V. V. and Yamakawa, K., Optics Letters, 21 (9), 668–670 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Zhou, J., Huang, C. P., Shi, C., Murnane, M. M. and Kapteyn, H. C., Optics Letters, 19 (2), 126128(1994)Google Scholar
  4. 4.
    Sullivan, A., Bonlie J.,. Price D. F and White, W. E., Optics Letters, 21 (8), 603 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Beaud, P., Richardson, M., Miesak, E. J. andChai, B. H. T., Optics Letters, 18 (18), 1550–1552 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Antonetti, A., Chambaret, J. P., Chenaux, G, Curley, P. F., Darpentigny, G., LeBlanc, C. and Salin, F.: Ultrafast Phenomena 8,, ( OSA, Washington D.C. 1996 ) p. 160Google Scholar
  7. 7.
    Y. Nabekawa, K. Kondo, N. Sarukura, K. Sajiki and S. Watanabe, Optics Letters, 18 (22), 19221924(1993)Google Scholar
  8. 8.
    Backus, S., Durfee, C., Mourou, G., Kapteyn, H., and Murnane, M., Optics Letters, 22 (16), 1256–1258 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Ross, I. N., Damerell, A. R., Divall, E. J., Evans, J., Hirst, G. J., Hooker,C. J., Houliston, J. R., Key, M. H.,Lister, J. M. D., Osvay, K., Shaw., M. J., Optics Comm., 109, 288–297 (1994)ADSGoogle Scholar
  10. 10.
    Szatmäri, S., Schäfer, F. P., Müller-Horsche, E. and Mückenheim, W, Optics Comm., 63, 305 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Bouma, B., Luk,T. S., Boyer, K.and Rhodes, C. K., JOSA B, 10 (7), 1180–1186 (1993)CrossRefGoogle Scholar
  12. 12.
    Nelson,T., Omenetto, F. G., Longworth, J. W., Schroeder, W. A., and Rhodes, C. K., Applied Optics, in pressGoogle Scholar
  13. 13.
    Omenetto, F. G., Boyer, K., Longworth, J. W., McPherson, A., Schroeder, W. A., Rhodes, C. K.,“ Applied Optics, 36 (15), 3421–3424, 1997ADSCrossRefGoogle Scholar
  14. 14.
    Luk, T. S., McPherson, A., Gibson, G., Boyer, K. and Rhodes, C. K., Optics Letters, 14, 11131115 (1989)Google Scholar
  15. 15.
    Dubinskii, M. A. et al., J. Mod. Opt, 40, 1, (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Dubinskii, M. A. et al., Optics Letters, 22 (18), 994–996, (1997)ADSGoogle Scholar
  17. 17.
    Marshall, C. D., Speth, J. A., Payne, S. A., Krupke, W. F., Quarles, G. J., Castillo, V., and Chai, B. H. T., J. Opt. Soc. Am. B 11, 2054–2065, (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Sheik-Bahae, M., Hutchings, D. C., Hagan, David J., and Van Stryland, E., IEEE J. Quant.Elect. QE-27, 1296–1309 (1991)Google Scholar
  19. 19.
    Salin, F., Squier, J., and Piché, Opt. Lett. 16, 1674 1676 (1991)Google Scholar
  20. 20.
    Taylor, A. J., Gibson, R. B., and Roberts, J. P., Optics Letters 13 (10), 814–816, 1988ADSCrossRefGoogle Scholar
  21. 21.
    Omenetto, F. G., Nelson,T., Longworth, J. W., Schroeder, W. A., and Rhodes, C. K., ’Design and Analysis of a New Solid-state Deep UV Laser based on Ce:LiSAF,“ in Laser Spectroscopy, Ed. M. Inguscio, M. Allegrini, A.. Sasso, World Scientific, Singapore, p. 360–361, 1995Google Scholar
  22. 22.
    Nelson,T., Omenetto, F. G., Longworth, J. W., Schroeder, W. A., and Rhodes, C. K.,, ’Design and Analysis of an all Solid-State UV Laser based on Ce 3 +LiSrAlF6,“ in ”High Power Lasers“, NATO-ASI series, Ed. R. Kossowsky, M. Jelinek, R. F. Walter, Kluwer Ac., London, p. 177-,184 1995.Google Scholar
  23. 23.
    Magni,V., Cerullo, V. and De Silvestri, S., Optics Comm., 101, 195 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Omenetto, F. G., Boyer, K., Longworth, J. W., McPherson, A., Schroeder, W. A., Rhodes, C. K. “High Intensity UV Sources: Multiterawatt Ultraviolet Laser System and Next Generation Sources” in proceedings Intl. Conference on Superstrong fields in Plasmas, Varenna, Italy, August 1997, in pressGoogle Scholar
  25. 25.
    McPherson, A., Thompson, B. D., Borisov, A. B., Boyer, K., and Rhodes, C. K. (1994) Multiphoton-induced X-ray emission at 4–5 keV fromXe atoms with multiple core vacancies., Nature 370, 631–634.ADSCrossRefGoogle Scholar
  26. 26.
    Dubinskii, M. A., “Recent Developments in Ce-activated Tunable Solid-State UV Lasers,” in Conference on Lasers and Electro-Optics, Vol.10 of Technical Digest Series (Optical Society of America, Washington D.C., 1997), CThN1 p. 404Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Fiorenzo G. Omenetto
    • 1
    • 2
  • Keith Boyer
    • 1
  • Tom Nelson
    • 1
  • James W. Longworth
    • 1
  • W. A. Schroeder
    • 1
  • C. K. Rhodes
    • 1
    • 3
  1. 1.Laboratory for Atomic, Molecular and Radiation Physics, rm.2136University of Illinois at ChicagoChicagoUSA
  2. 2.Dipartimento di ElettronicaUniversità di PaviaPaviaItaly
  3. 3.TARAUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations