Advertisement

X-Ray Emission from Rare Gas Clusters in Intense Laser Fields

  • M. Lezius
  • S. Dobosz
  • P. d’Olivera
  • P. Meynadier
  • J.-P. Rozet
  • D. Vernhet
  • N. Normand
  • M. Schmidt

Abstract

Recent experimental observations have demonstrated, that the interaction of intense laser light with rare gas clusters leads to extremely energetic states of matter. For example, Xe(M) and Kr(L) shell transition photons with energies of up to 5 keV have been reported by McPherson et al.1. Furthermore, highly charged (>30+) xenon ions with startup energies reaching 1 MeV have been observed by Ditmire et al.2, using irradiation intensities of 1016 W/cm2. Earlier, Snyder et al.3 were able to resolve xenon charge states as high as q=20 using a reflectron type time of flight mass spectrometer and laser intensities of about 1015 W/cm2. The very effective energy transfer of the laser light into highly ionized atomic states embedded in clusters is currently interpreted as a result of small scale collective effects like coherent electron motion45, ionization ignition6 or collisional absorption into cluster-sized nano-plasmas2,7. To shed more light onto the ongoing discussion concerning the primary heating and ionization mechanism, e.g. the absorption of the laser light and the production of highly charged ion states, We present here a quantitative study on the x-ray yield as well as a function of the laser intensity (up to 1017 W/cm2), the target material (argon, krypton, xenon) and the cluster size (up to 2×106). Our results contain also relevant data for possible future applications of clusters in strong fields as a renewable and very small x-ray source.

Keywords

Cluster Size Laser Intensity Stagnant Pressure Cluster Beam Effective Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. McPherson, et al., Phys. Rev. Lett. 72:1810 (1994)Google Scholar
  2. T. Ditmire, et al., Nature 386:54 (1997)Google Scholar
  3. T. Ditmire, Phys. Rev. Lett. 78: 2732 (1997)ADSCrossRefGoogle Scholar
  4. 3.
    E. M. Snyder, et. at., Phys.Rev.Lett. 77: 3347 (1996)Google Scholar
  5. B.D. Thompson et al., J. Phys. B 27:4391 (1994)Google Scholar
  6. A.B. Borisov et al., J. Phys. B. 28:2143 (1995)Google Scholar
  7. 6.
    Rose-Petruck et al., Phys. Rev. A 55 (2): 1182 (1997)Google Scholar
  8. 7.
    M. Lezius, etal., J. Phys. B 30: L251 (1997)Google Scholar
  9. 8.
    S. Dobosz, et. al., Phys.Rev.A.:Rapid Comm. 56 (4) (1997)Google Scholar
  10. T. Auguste, et al., J. Phys. B 25: 4181 (1992)Google Scholar
  11. 10.
    O. F. Hagena, Z. Phys. D 84: 291 (1987)Google Scholar
  12. J. Farges, et al., J. Chem. Phys. 84: 3491 (1986)Google Scholar
  13. 12.
    O. F. Hagena, Surf. Sci. 106: 101 (1981)Google Scholar
  14. 13.
    P. Lechner and L. Strüder, Nucl. Instrum. Methods Phys. Res. A 354: 464 (1995)ADSCrossRefGoogle Scholar
  15. D. G. Stearns, et al., Phys. Rev. A 37: 1684 (1988)Google Scholar
  16. S. P. Gordon, et al., Opt. Lett. 19: 484 (1994)Google Scholar
  17. K. Kondo, et al., J. Phys. B 30: 2707 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Lezius
    • 1
  • S. Dobosz
    • 1
  • P. d’Olivera
    • 1
  • P. Meynadier
    • 1
  • J.-P. Rozet
    • 2
  • D. Vernhet
    • 2
  • N. Normand
    • 1
  • M. Schmidt
    • 1
  1. 1.CEA-SaclayDSM/DRECAM/SPAMGif-sur-Yvette CedexFrance
  2. 2.Université Paris VIParis Cedex 5France

Personalised recommendations