Advertisement

A Debrisless Laser-Plasma Source for EUV and XUV Generation

  • Christopher M. DePriest
  • David S. Torres
  • Martin C. Richardson

Abstract

Interest in debris-free sources of short-wavelength EUV radiation has risen in recent years due primarily to anticipated needs in the area of projection lithography, where smaller feature sizes and increased production rates are targeted for the near-future in the semiconductor industry. Consequently, laser-plasmas have come to the forefront as attractive source candidates for such lithography systems. As compact, modular, and highrep-rate sources, laser-plasmas have already demonstrated the required minimum efficiency[1,2]. The water-droplet laser-plasma source[3] offers the additional advantages of low-cost (~$10−6/shot), continuous, debris-free operation that future lithography systems require. Broadband emission from solid-target laser-plasmas created from high-Z materials, which can lead to off-band heating by absorption of the primary collection optics[3], is another problem that is circumvented with the narrow-band droplet laser-plasma. In addition, solute-doped droplet targets are promising candidates for generating debris-free XUV radiation having, in general, the same advantages as the water droplet EUV source.

Keywords

Water Droplet Lithography System Small Feature Size Projection Lithography Droplet System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Kauffmann, D. W. Phillion, and R. C. Spitzer, Appl. Opt., 32: 6897 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    G. D. Kubiak, K. W. Berger, S. J. Haney, P. D. Rockett, and J. A. Hunter, OSA Proceedings on Soft X-ray Lithography, A. M. Hawryluk and R. H. Stulen, eds. (Optical Society of America, Washington, DC 1993) 18, p. 127.Google Scholar
  3. 3.
    F. Jin, M. Richardson, G. Shimkaveg, and D. Torres, Proceedings on the Applications of Laser Plasma Radiation II, M. Richardson and G. Kyrala eds. (SPIE, Bellingham, WA., 1995), 2523, p. 81.: F. Jin, M. Richardson, G. Shimkaveg, and D. Tones, in TOPS on EUV Lithography, G. D. Kubiak and D. Kania eds. ( Optical Society of America, Washington, DC, 1996 ), p. 89.Google Scholar
  4. 4.
    M. Richardson, W. T. Silfvast, H. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, Appl. Opt., 32: 6901 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    M. Richardson, D. Tones, C. DePriest, F. Jin, and G. Shimkaveg, Opt. Comm., to be published.Google Scholar
  6. 6.
    J. P. Christansen, D. E. T. F. Ashby and K. V. Roberts, Com. Phys. Comm., 7: 271 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    R. Lee, User Manual for RATION, (University of California and LLNL, 1990 ).Google Scholar
  8. 8.
    L. Rymell & H. M. Hertz, Opt. Comm., 103: 105 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    L. Malmqvist, L. Rymell, M. Berglund, and H. M. Hertz, Rev. Sci. Inst., 67: 4150 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    Livermore reference on 10% cony. Eff in ...Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Christopher M. DePriest
    • 1
  • David S. Torres
    • 1
  • Martin C. Richardson
    • 1
  1. 1.Laser Plasma LaboratoryCREOL, University of Central FloridaOrlandoUSA

Personalised recommendations