Advertisement

Spectroscopic Investigations of an Optical-Fieldionized X-Ray Laser with a Microcapillary Target

  • Katsumi Midorikawa
  • Yutaka Nagata

Abstract

The use of optical field ionization (OFI) for the production of plasma media of recombination-pumped x-ray lasers introduces some favorable characteristics. The first advantage is that it is possible to produce population inversion with respect to the ground state of an ion,1,2 because the OFI and the following three-body recombination processes are faster than radiative decay rates of the relevant resonance lines. This leads to a laser transition with a much shorter wavelength compared with that between excited states. The second advantage is that x-ray lasers by OFI could be operated more efficiently than ones pumped by conventional electron collisional ionization because of their high quantum efficiency and the controllability of plasma characteristics.

Keywords

Small Signal Gain Radiative Decay Rate Preform Plasma High Intensity Laser Pulse Linear Diode Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. H. Burnett and P. B. Corkum, Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization, J. Opt. Soc. Am B 6: 1195 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    N. H. Burnett and G. D. Enright, Population inversion in the recombination of optically-ionized plasmas, IEEE J. Quantum Electron. 26: 1797 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, Soft-x-ray amplification of the Lyman-a transition by optical-field-induced ionization, Phys. Rev. Lett. 71: 3774 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    P. Monot, T. Auguste, L. A. Lompre, G. Mainfray, and C. Manus, Focusing limits of a terawatt laser in an underdense plasma, J. Opt. Soc. Am. B 9: 1579 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    Y. M. Li, J. N. Broughton, R. Fedosejevs, and T. Tomie, Formation of plasma columns in atmospheric pressure gases by picosecond KrF laser pulses, Opt. Commun. 93: 366 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    C. D. Decker, D. C. Eder, and R. A. London, Ionization-induced refraction in recombination x-ray lasers, Phys. Plasmas 3: 414 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    D. V. Korobkin, C. H. Nam, and S. Suckewer, Demonstration of soft x-ray lasing to ground state in Li HI, Phys. Rev. Lett. 77: 5206 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    S. Kubodera, Y. Nagata, Y. Akiyama, K. Midorikawa, M. Obara, H. Tashiro, and K. Toyoda, High-order harmonic generation in laser-produced ions, Phys. Rev. A 48: 4576 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    P. Sprangle and E. Esarey, Interaction of ultrahigh laser fields with beams and plasmas, Phys. Fluids B 4: 2241 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ehrlich, C. Cohen, A. Zigler, J. Krall. S. Sprangle, and E. Esarey, Guiding of high intensity laser pulses in straight and curved plasma channel experiments, Phy. Rev. Lett. 77: 4186 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    S. Jackel, R. Burris, J. Grun, A. Ting, C. Manka, K. Evans, and J. Kosakowskii, Channeling of terawatt laser pulses by use of hollow waveguides, Opt. Lett. 10: 1086 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Katsumi Midorikawa
    • 1
  • Yutaka Nagata
    • 1
  1. 1.Laser Technology LaboratoryThe Institute of Physical and Chemical Research, RIKENWako-shi, SaitamaJapan

Personalised recommendations