Skip to main content

Abstract

Chirped-pulse amplification applied to broad-bandwidth solid-state lasers has created a revolution in the production and use of terawatt and now petawatt class lasers.1,2 The concepts and technology contributing to this revolution have evolved continuously since the early 1970’s. Following the grating compressor work of Treacy3, Bischell4 and others described the application of chirped-pulse amplification to Nd:Glass lasers. This was followed by a large amount of work on fiber-grating pulse compression for communication research.5 In 1985, Strickland and Mourou combined many of these ideas into the first practical demonstration of chirped-pulse amplification with a solid-state laser.6 Following this initial demonstration, rapid developments in technology such as the stretcher design of Martinez7 led to small scale systems capable of terawatt8 and multiterawatt pulses.9–11 Occurring in parallel with the development of chirped-pulse amplification technology using Nd:Glass lasers, was the development of the new laser material, titanium-doped sapphire. The commercial availability of this unique laser material dramatically propelled the revolution in CPA based solid-state lasers. An overwhelming majority of CPA lasers now employ Ti:sapphire either throughout the entire laser system or at least as the oscillator material.13 These early developments and the large amount of effort that has gone into the laser technology in recent years have culminated in high pulse energy systems producing pulses with a peak power of 125 TW14 and very short-pulse systems producing multiterawatt pulses which only contain a few optical cycles.15–18 Here, we describe the limits of CPA technology in the context of a large scale system producing pulses with a peak power exceeding 1.25 petawatts (1250 TW).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D. Perry, and Gerard Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science, 264, 917 (1994).

    Article  ADS  Google Scholar 

  2. C. Joshi and P.B. Corkum, Physics Today, January 1996.

    Google Scholar 

  3. E.B. Treacy, IEEE J. Quan. Elec., 5, 454 (1969).

    Article  Google Scholar 

  4. R.A. Fisher and W.K. Bischell, IEEE J. Quan. Elec., 11, 46 (1975).

    Article  ADS  Google Scholar 

  5. D. Grischkowsky and A.C. Balant, App. Phys. Lett., 41, 1, (1982).

    Article  ADS  Google Scholar 

  6. D. Strickland and G. Mourou, Opt. Comm., 56, 219 (1985).

    Article  ADS  Google Scholar 

  7. O.E. Martinez, IEEE J. Quan. Elec., 23, 1385 (1987).

    Article  Google Scholar 

  8. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quan. Elec., 24, 398 (1988).

    Article  ADS  Google Scholar 

  9. M.D. Perry, F.G. Patterson, R. Ettlebrick and J. Weston, Opt. Lett, 15, 381 (1990)

    Article  ADS  Google Scholar 

  10. F.G. Patterson, M.D. Perry and J.T. Hunt, J. Opt. Soc. Amer. B, 8, 2384 (1991).

    Article  ADS  Google Scholar 

  11. C. Sauteret, et al, Optics Lett., 16, 238 (1991)

    Article  ADS  Google Scholar 

  12. C. Rouyer, et al, Optics Lett., 18, 214 (1993).

    Article  ADS  Google Scholar 

  13. K. Yamakawa, H. Shiraga, and Y. Kato, Optics Lett., 16, 1593 (1991).

    Article  ADS  Google Scholar 

  14. P.F. Moulton, J. Opt. Soc. Amer. B, 3, 125 (1986).

    Article  Google Scholar 

  15. D.E. Spence, P.N. Kean, and W. Sibbett, Optics Letters, 16, 42 (1991).

    Article  ADS  Google Scholar 

  16. B.C. Stuart, M.D. Perry, J. Miller, G. Tietbohl, S. Herman, J.A. Britten, C. Brown, D. Pennington, V. Yanovsky and K. Wharton, “125-TW Ti:Sapphire/ Nd:Glass Laser System,” Optics Letters, 22, 242 (1997).

    Article  ADS  Google Scholar 

  17. J.P. Chamberet, et al, Optics Letters, 21, 1921 (1996)

    Article  ADS  Google Scholar 

  18. J.P. Zhou, C.P. Huang, M.M. Murnane and H.C. Kapteyn, Optics Letters, 20, 64 (1995).

    Google Scholar 

  19. C.P. Barty, J. Squier, K. Wilson

    Google Scholar 

  20. C. Spielmann, Optics Letters, (1996)

    Google Scholar 

  21. M.D. Perry, T. Ditmire, and B.C. Stuart, “Self-Phase Modulation in Chirped Pulse Amplification,” Optics Letters, 19, 2149 (1994).

    Article  ADS  Google Scholar 

  22. M. Tabak, M.D. Perry, J. Hammer, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M.Campbell, and R. J. Mason, Phys. Plasmas, 1, 1626 (1994).

    Article  ADS  Google Scholar 

  23. B. Stuart, S. Herman and M.D. Perry, IEEE J. Quan. Elec., 31, 528 (1995).

    Article  ADS  Google Scholar 

  24. M.D. Perry, T. Ditmire, and D. Strickland, Optics Letters, 17, 601 (1992).

    Article  ADS  Google Scholar 

  25. R. Boyd, J.A. Britten, B.W. Shore, B. Stuart, and M.D. Perry, “High Efficiency Metallic Gratings for Laser Applications,” Applied Optics, 34 1697 (1995).

    Article  ADS  Google Scholar 

  26. M.D. Perry, J.A. Britten, R.D. Boyd, B. Shore, C. Shannon, and E. Shults, Optics Letters, 20, 940 (1995).

    Article  ADS  Google Scholar 

  27. H.T.Nguyen, B.W. Shore, S.J. Bryan, J.A. Britten, and M.D. Perry, “High-efficiency fused silica transmission gratings,” Optics Letters, 22, 142 (1997).

    Article  ADS  Google Scholar 

  28. J.A. Britten, M.D. Perry, B.W. Shore, and R.D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1200 nm range,” Opt. Lett., 21, 540 (1996).

    Article  ADS  Google Scholar 

  29. M. D. Perry, V. Yanovsky, M. Feit, and A. Rubenchik, “Plasma mirrors,” Phys. Plasmas, submitted, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perry, M.D. et al. (1998). The Production of Petawatt Laser Pulses. In: DiMauro, L., Murnane, M., L’Huillier, A. (eds) Applications of High-Field and Short Wavelength Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9241-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9241-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9243-0

  • Online ISBN: 978-1-4757-9241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics