Skip to main content

Structure and Mechanism of Action of the Enzyme(s) Involved in Methane Oxidation

  • Chapter
Applications of Enzyme Biotechnology

Abstract

It is generally accepted that life on this planet evolved around 3.5 × 109 years ago. At that time it appears that the planet was sufficiently cool to permit the permanent existence of water, the atmosphere being comprised principally of methane, ammonia, and hydrogen with traces of carbon dioxide, hydrogen sulfide, dinitrogen and a few noble gases. Clearly the primitive life forms were bacterial in nature and utilized either methane or carbon dioxide or simple heterotrophic substrates produced by electrical discharge from these ‘primitive’ gases under anaerobic conditions for growth. Once the highly toxic oxygen molecule appeared in reasonable amounts in the atmosphere (around 1.7 x 109 years BP) then organisms evolved which could utilize the large amount of energy released by the aerobic oxidation of organic substrates to CO2 and water. In present day terms the existence of aerobic methane-oxidizers had been known for over 100 years but only aroused polite interest until Jackson Foster, here in Texas, revitalized activity in these bugs by reisolating several strains in the late 50’s1. This work prompted others (notably Whittenbury and colleagues) to devise facile isolation and cultivation techniques which led to over 100 new strains being clearly identified2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leadbetter, E. R. and Foster, J. W., 1958, Arch. Microbiol., 30:91–118.

    CAS  Google Scholar 

  2. Whittenbury, R., Phillips, K. C. and Wilkinson, J. F., 1970, J. Gen. Microbiol., 61:205–218.

    Article  PubMed  CAS  Google Scholar 

  3. Higgins, I. J. and Quayle, J. R., 1970, Biochem. J., 118:210–218.

    Google Scholar 

  4. Panganiban, A. T., Patt, T. E., Hart, W. and Hanson, R. S., 1979, Appl. Env. Microbiol., 37:303–309.

    CAS  Google Scholar 

  5. Prior, S. D. and Dalton, H., 1985, FEMS Microbiol. Lett., 29:105–109.

    Article  CAS  Google Scholar 

  6. Stanley, S. H. S., Prior, S. D., Leak, D. J. and Dalton, H., 1983, Biotechnol. Lett., 5:487–492.

    Article  CAS  Google Scholar 

  7. Leak, D. J. and Dalton, H., 1986, Appl. Microbiol. Biotech., 23:470–476.

    Article  CAS  Google Scholar 

  8. Bishop, P. E., Jarlenski, D. M. L. and Hetherington, D. R., 1980, PNAS USA. 77:7342–7346.

    Article  PubMed  CAS  Google Scholar 

  9. Bishop, P. E. and Joerger, R. D., 1990, Ann. Rev. Pl. Physiol. Pl. Mol. Biol., 41:109–125.

    Article  CAS  Google Scholar 

  10. Akent’eva, N. F. and Gvozdev, R. I., 1988, Biokhimiva 53:91–96.

    CAS  Google Scholar 

  11. Tonge, G. M., Harrison, D. E. F. and Higgins, I. J., 1977, Biochem. J., 161:333–344.

    PubMed  CAS  Google Scholar 

  12. Smith, D. D. S. and Dalton, H., 1989, Eur. J. Biochem., 182:667–671.

    Article  PubMed  CAS  Google Scholar 

  13. Colby, J. and Dalton, H., 1979, Biochem. J., 177:903–908.

    PubMed  CAS  Google Scholar 

  14. Green, J. and Dalton, H., 1985, J. Biol. Chem., 260:15795–15801.

    PubMed  CAS  Google Scholar 

  15. Woodland, M. P. and Dalton, H., 1984, J. Biol. Chem., 259:53–60.

    PubMed  CAS  Google Scholar 

  16. Green, J. and Dalton, H., 1988, J. Biol. Chem., 263:17561–17565.

    PubMed  CAS  Google Scholar 

  17. Pilkington, S. J., Salmond, G. P. C., Murrell, J. C. and Dalton, H., 1990, FEMS Microbiol. Lett., 72:345–348.

    Article  CAS  Google Scholar 

  18. Green, J. and Dalton, H., 1989, Biochem. J., 259:167–172.

    PubMed  CAS  Google Scholar 

  19. Lund, J. and Dalton, H., 1985, Eur. J. Biochem., 147:291–296.

    Article  PubMed  CAS  Google Scholar 

  20. Woodland, M. P., Patil, D. S., Cammack, R. and Dalton, H., 1986, Biochim. Biophys. Acta., 873:237–242.

    Article  CAS  Google Scholar 

  21. Fox, B. G., Surerus, K. K., Munck, E. and Lipscomb, J. D., 1988, J. Biol. Chem., 263:10553–10556.

    PubMed  CAS  Google Scholar 

  22. Reem, R. C. and Solomon, E. I., 1987, J. Amer. Chem. Soc., 109:1216–1226.

    Article  CAS  Google Scholar 

  23. Bentsen, J. G., Lippard, S. J., DeWitt, J., Hedman, B., Ericson, A., Hodgson, K. O., Green, J. and Dalton, H., 1989, Poster preparation at ‘Metals in Biology’ Gordon Research Conference Ventura, California, USA.

    Google Scholar 

  24. Ericson, A., Hedman, B., Hodgson, K. O., Green, J., Dalton, H., Bentsen, J. G., Beer, R. H. and Lippard, S. J., 1988, J. Amer. Chem. Soc., 110:2330–2332.

    Article  CAS  Google Scholar 

  25. Green, J. and Dalton, H., 1986, Biochem. J., 236:155–162.

    PubMed  CAS  Google Scholar 

  26. Barton, D. H. R., Csuhai, E., Doller, D., Ozbalik, N. and Balavoine, G., 1990, Proc. Natl. Acad. Sci. USA. 87:3401–3404.

    Article  PubMed  CAS  Google Scholar 

  27. Colby, J., Stirling, D. I. and Dalton, H., 1977, Biochem. J., 165:395–402.

    PubMed  CAS  Google Scholar 

  28. Green, J. and Dalton, H., 1989, J. Biol. Chem., 264:17698–17703.

    PubMed  CAS  Google Scholar 

  29. Leak, D. J. and Dalton, H., 1987, Biocatalysis. 1:23–36.

    Article  CAS  Google Scholar 

  30. Ortiz de Montellano, P. R., 1986, In: ‘Cytochrome P450, Structure, Mechanism and Biochemistry’ (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 217–271.

    Google Scholar 

  31. Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H. and Murrell, J. C., 1990, Gene. 91:27–34.

    Article  PubMed  CAS  Google Scholar 

  32. Stainthorpe, A. C., Murrell, J. C., Salmond, G. P. C., Dalton, H. and Lees, V., 1989, Arch. Microbiol. 152:154–159.

    Article  PubMed  CAS  Google Scholar 

  33. Nordlund, P., Sjöberg, B. M. and Eklund, H., 1990, Nature, 345:593–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dalton, H. (1991). Structure and Mechanism of Action of the Enzyme(s) Involved in Methane Oxidation. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics