Advertisement

Oxygenation by Methane Monooxygenase: Oxygen Activation and Component Interactions

  • Wayne A. Froland
  • Kristoffer K. Andersson
  • Sang-Kyu Lee
  • Yi Liu
  • John D. Lipscomb
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

Methanotrophic bacteria possess the unique ability to utilize methane as the sole source of carbon and energy. Indeed, methane is the only carbon source capable of sustaining vigorous and long term growth of these organisms1. The methanolytic activity of methanotrophs can be ascribed to the elaboration of a unique enzyme, methane monooxygenase2 (MMO), which catalyzes the following reaction:
$$ Methane + {O_2} + NADH + {H^ + } \to NA{D^ + } + {H_2}O + Methanol $$

Keywords

Product Distribution Mossbauer Spectrum Methane MONOOXYGENASE Hydrogen Atom Abstraction Mixed Valent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Whittenbury, K C. Phillips, and J. F. Wilkinson, J. Gen. Microbiol. 61:205 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Colby and H. Dalton, Biochem. J. 171:461 (1978).PubMedGoogle Scholar
  3. 3.
    J. Colby, H. Dalton, and R. Whittenbury, Ann. Rev. Microbiol 33:481 (1979).CrossRefGoogle Scholar
  4. 4.
    C. Anthony, “The Biochemistry of the Methylotrophs” Academic Press, London (1982).Google Scholar
  5. 5.
    S. H. Stanley, S. D. Prior, D. J. Leak, and H. Dalton, H. Biotech. Lett. 5:487 (1983).CrossRefGoogle Scholar
  6. 6.
    D. Scott, D. J. Best, and I. J. Higgins, Biotech. Lett. 3:641 (1981).CrossRefGoogle Scholar
  7. 7.
    K J. Davis, A. Cornish, and I. J. Higgins, J. Gen. Micro. 133:291 (1987).Google Scholar
  8. 8.
    J. Green, and H. Dalton, J. Biol. Chem. 260:15795 (1985).PubMedGoogle Scholar
  9. 9.
    M. P. Woodland and H. Dalton, J. Biol. Chem. 259:53 (1984).PubMedGoogle Scholar
  10. 10.
    J. Colby and H. Dalton Biochem. J. 177:903 (1979).PubMedGoogle Scholar
  11. 11.
    R. N. Patel, Arch. Biochem. Biophys. 252:229 (1986).CrossRefGoogle Scholar
  12. 12.
    R. N. Patel, and J. C. Savas, J. Bacteriol. 169:2313 (1987).PubMedGoogle Scholar
  13. 13.
    B. G. Fox and J. D. Lipscomb, Biochem. Biophys. Res. Comm. 154:165 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    B. G. Fox., W. A. Froland, J. Dege, and J. D. Lipscomb, J. Biol. Chem. 264:10023 (1989)PubMedGoogle Scholar
  15. 15.
    R. E. White and M. J. Coon, Ann. Rev. Biochem. 49:315 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    B. G. Fox, K. K. Surerus, E. Münck, E., and J. D. Lipscomb, J. Biol. Chem. 263:10553 (1988).PubMedGoogle Scholar
  17. 17.
    M. P. Woodland, D. S. Patil, R. Cammack, and H. Dalton, Biochim. Biophys. Acta, 873:237 (1986).CrossRefGoogle Scholar
  18. 18.
    R. C. Prince, G. N. George, J. C. Savas, S. P. Cramer, and R. N. Patel, Biochim. Biophys. Acta 952:220 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    I. J. Higgins, D. J. Best, and R. C. Hammond, Nature 286:561 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Green and H. Dalton, J. Biol. Chem. 264:17698 (1989).PubMedGoogle Scholar
  21. 21.
    D. H. Enhalt and U. Schmidt, Pure Appl. Geophys. 116:452 (1978).CrossRefGoogle Scholar
  22. 22.
    D. H. Enhalt, in: “Microbial Production and Utilization of Gases”, H. G. Schlegel, G. Gottschalk, N. Pfennig, eds., pp. 13–22, Goltze Publishers, Göttingen (1976).Google Scholar
  23. 23.
    B. Hileman, Chem. & Eng. News 67:25 (1989).CrossRefGoogle Scholar
  24. 24.
    B. G. Fox, J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, Biochemistry 29:6419 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    A. C. Stainthorpe, V. Lees, G. P. C. Salmond, H. Dalton, and J. C. Murrell, Gene, 91:27 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    D. L. N. Cardy, V. Laidler, G. P. C. Salmond, and J. C. Murrell, Molecular Microbiology 5:335 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    B. G. Fox, W. A. Froland, and J. D. Lipscomb, in: “Gas Oil and Coal Biotechnology I” C. Akin and J. Smith, eds., pp. 197–214, Institute of Gas Technology Press, Chicago, (1990).Google Scholar
  28. 28.
    B. G. Fox and J. D. Lipscomb, in: “Biological Oxidation Systems”, C. C. Reddy, G.A. Hamilton, and M.K Madyastha, eds., Vol. 1, pp. 367–388, Academic Press, San Diego, (1990).Google Scholar
  29. 29.
    P. Bertrand, B. Guigliarelli, and J. P. Gayda, Arch. Biochem. Biophys. 245:305 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    M. P. Hendrich, E. Münck, B. G. Fox, and J. D. Lipscomb, J. Amer. Chem. Soc. 112:5861 (1990).CrossRefGoogle Scholar
  31. 31.
    A. Ericson, B. Hedman, K. O. Hodgson, J. Green, H. Dalton, J. G. Bentsen, R. H. Beer, and S. J. Lippard, J. Amer. Chem. Soc. 110:2330 (1988).CrossRefGoogle Scholar
  32. 32.
    B. G. Fox, Y. Liu, Y., J. Dege, and J. D. Lipscomb, J. Biol. Chem. 265:540 (1990).Google Scholar
  33. 33.
    R. E. Stenkamp, L. C. Sieker, L. H. Jensen, J. Am. Chem. Soc. 106:618 (1984).CrossRefGoogle Scholar
  34. 34.
    B. C. Antanaitis and P. Aisen, Adv. Inorg. Biochem., 5:111 (1983).PubMedGoogle Scholar
  35. 35.
    B. C. Antanaitis, P. Aisen, and H. R. Lilienthal, J. Biol. Chem. 258:3166 (1983).PubMedGoogle Scholar
  36. 36.
    P. Reichard and A. Ehrenberg, Science 221:514 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    P. Nordlund, B-M. Sjöberg and H. Eklund, Nature 345:593 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    T. J. McMurry and J. T. Groves, in: “Cytochrome P-450 Structure, Mechanism and Biochemistry”, P. R. Ortiz de Montellano, ed., pp 1–28. Plenum Press, New York (1986).CrossRefGoogle Scholar
  39. 39.
    G. A. Hamilton, in: “Molecular Mechanisms of Oxygen Activation” O. Hayaishi, ed., pp 405–451, Academic Press, New York (1974).Google Scholar
  40. 40.
    R. E. Miller and F. P. Guengerich, Biochemistry 21:1090 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    M. J. Rataj, J. E. Kauth, and M. I. Donnelly, J. Biol. Chem. 266: (1991), in press.Google Scholar
  42. 42.
    J. T. Groves, G. A. McClusky, R. E. White, and M. J. Coon, Biochem. Biophys. Res. Commun. 81:154 (1978).PubMedCrossRefGoogle Scholar
  43. 43.
    J. T. Groves and G. A. McClusky, J. Am. Chem. Soc. 98:859 (1976).CrossRefGoogle Scholar
  44. 44.
    E. G. Hrycay, J-Å. Gustafsson, M. Ingelman-Sundberg, and L. Ernster, FEBS Lett., 56:161 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    A. D. Rahimtula and P. J. O’Brien, Biochem. Biophys. Res. Commun., 60:440 (1974).PubMedCrossRefGoogle Scholar
  46. 46.
    K. K Andersson, W. A. Froland, S-K. Lee, and J. D. Lipscomb, New J. Chem. 15: (1991), in press.Google Scholar
  47. 47.
    J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong, and R. H. Fish, J. Am. Chem. Soc. 110:6898 (1988).CrossRefGoogle Scholar
  48. 48.
    B. P. Murch, F. C. Bradley, and L. Que, Jr., J. Am. Chem. Soc. 108:5027 (1986).CrossRefGoogle Scholar
  49. 49.
    N. Kitajima, H. Fukui, and Y. Moro-Oka, J. Chem. Soc.f Chem. Comm. 7:485 (1988).CrossRefGoogle Scholar
  50. 50.
    D. H. R. Barton, E. Csuhai, D. Doller, N. Ozbalik, and G. Balavoine, Proc. Natl. Acad. Sci., U. S. A. 87:3401 (1990).PubMedCrossRefGoogle Scholar
  51. 51.
    R. A. Leising, R. E. Norman, and L. Que, Jr., Inorg. Chem. 29:2553 (1990).CrossRefGoogle Scholar
  52. 52.
    R. A. Leising, B. A. Brennen, L. Que, Jr., B. G. Fox, and E. Münck, E., J. Am. Chem. Soc. 113:3988(1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Wayne A. Froland
    • 1
  • Kristoffer K. Andersson
    • 1
  • Sang-Kyu Lee
    • 1
  • Yi Liu
    • 1
  • John D. Lipscomb
    • 1
  1. 1.Department of Biochemistry, Medical SchoolUniversity of MinnesotaMinneapolisUSA

Personalised recommendations