Poxvirus Vectors: Mammalian Cytoplasmic-Based Expression Systems

  • Bernard Moss
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


The unique biological characteristics of poxviruses have been exploited for the development of vaccinia virus into a powerful and versatile expression vector with applicability to many areas of research and biotechnology (Moss, 1991). The poxviruses comprise a group of genetically related DNA viruses that are unusual in their ability to propagate in the cytoplasm, rather than in the nucleus, of infected cells. Electron microscopic and autoradiographic examinations have revealed cytoplasmic factories of viral DNA replication and particle assembly. The enzymes and factors required for transcription and replication are encoded within the poxvirus genome, which may contain 200 or more genes. The previous use of vaccinia virus as a live vaccine for the eradication of smallpox, and the potential for recombinant vaccinia viruses containing genes from other microorganisms to serve as live vaccines against current diseases, contributed to the interest in this vector. For these reasons, recombinant vaccinia viruses have been extensively used by immunologists and virologists to determine the targets of humoral and cell mediated immune responses to microbial infections and candidate human and veterinary live recombinant vaccines are currently being tested. Poxviruses encode their own DNA-dependent RNA polymerase and high levels of expression of foreign genes have been obtained by optimizing poxvirus promoter function. Thus, recombinant vaccinia viruses are particularly useful for protein production in cultured mammalian cells. A modified system has been made by importing the bacteriophage T7 RNA polymerase gene into vaccinia virus and using bacteriophage promoters for high level expression. With both systems, the recombinant proteins appear to be properly processed and transported within the mammalian cell.


Cystic Fibrosis Transmembrane Conductance Regulator Vaccinia Virus Foreign Gene Recombinant Vaccinia Virus Vesicular Stomatitis Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, W. A., Moss, B. and Fuerst, T. R., 1991. Novel system for regulated high level expression in vaccinia virus. Vaccines 90:221.Google Scholar
  2. Ashorn, P., Berger, E. A. and Moss, B., 1990. Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of non-primate cells with human cells. J. Virol. 64:2149.PubMedGoogle Scholar
  3. Barrett, N., Mitterer, A., Mundt, W., Eibl, J., Eibl, M., Gallo, R. C., Moss, B. and Dorner, F., 1989. Large-scale production and purification of a vaccinia recombinant-derived HIV-1 gpl60 and analysis of its immunogenicity. AIDS Res. Human Retroviruses. 5: 159.CrossRefGoogle Scholar
  4. Blancou, J., Kieny, M. P., Lathe, R., Lecocq, J. P., Pastoret, P. P., Soulebot, J. P. and Desmettre, P., 1986. Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature. 322:373.PubMedCrossRefGoogle Scholar
  5. Boyle, D. B. and Coupar, B. E. H., 1988. A dominant selectable marker for the construction of recombinant poxviruses. Gene. 65:123.PubMedCrossRefGoogle Scholar
  6. Buonocore, L. and Rose, J. K., 1990. Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature. 345:625.PubMedCrossRefGoogle Scholar
  7. Chakrabarti, S., Brechling, K. and Moss, B., 1985. Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5:3403.PubMedGoogle Scholar
  8. Cochran, M. A., Mackett, M. and Moss, B., 1985. Eukaryotic transient expression system dependent on transcription factors and regulatory DNA sequences of vaccinia virus. Proc. Natl. Acad. Sci. USA. 82:19.CrossRefGoogle Scholar
  9. Cooney, E. L., Collier, A. C., Greenberg, P. D., Coombs, R. W., Zarling, J., Arditti, D. E., Hoffman, M. C., Hu, S. L. and Corey, L., 1991. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet. 337:567.PubMedCrossRefGoogle Scholar
  10. Davison, A. J. and Moss, B., 1990. New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Research. 18:4285.PubMedCrossRefGoogle Scholar
  11. Earl, P. L., Hiigen, A. W. and Moss, B., 1990. Removal of cryptic poxvirus transcription termination signals from the human immunodeficiency virus type 1 envelope gene enhances expression and immunogenicity of a recombinant vaccinia virus. J. Virol. 64:2448.PubMedGoogle Scholar
  12. Elroy-Stein, O., Fuerst, T. R. and Moss, B., 1989. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc. Natl. Acad. Sci. USA. 86:6126.PubMedCrossRefGoogle Scholar
  13. Elroy-Stein, O. and Moss, B., 1990. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc. Natl. Acad. Sci. USA. 87:6743.PubMedCrossRefGoogle Scholar
  14. Falkner, F. G. and Moss, B., 1988. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J. Virol. 62:1849.PubMedGoogle Scholar
  15. Falkner, G. G., Chakrabarti, S. and Moss, B., 1987. pUV I: a new vaccinia virus insertion and expression vector. Nucl. Acids. Res. 15:7192.PubMedCrossRefGoogle Scholar
  16. Franke, C. A., Rice, C. M., Strauss, J. H. and Hruby, D. E., 1985. Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol. Cell. Biol. 5:1918.PubMedGoogle Scholar
  17. Fuerst, T. R., Earl, P. L. and Moss, B., 1987. Use of a hybrid vaccinia virus T7 RNA polymerase system for expression of target genes. Mol. Cell. Biol. 7:2538.PubMedGoogle Scholar
  18. Fuerst, T. R.and Moss, B., 1989. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5′ untranslated leader. J. Mol. Biol. 206:333.PubMedCrossRefGoogle Scholar
  19. Fuerst, T. R., Niles, E. G., Studier, F. W. and Moss, B., 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 83:8122.PubMedCrossRefGoogle Scholar
  20. Isaacs, S. N., Kotwal, G. J. and Moss, B., 1990. Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses. Virology. 178:626.PubMedCrossRefGoogle Scholar
  21. Keil, W. and Wagner, R. R., 1989. Epitope mapping by deletion mutants and two chimeras of two vesicular stomatitis virus glycoprotein genes expressed by a vaccinia virus vector. Virol. 170:392.CrossRefGoogle Scholar
  22. Li, Y., Luo, L., Snyder, R. M. and Wagner, R. R., 1988. Expression of the M gene of vesicular stomatitis virus cloned in various vaccinia virus vectors. J. Virol. 62:776.PubMedGoogle Scholar
  23. Mackett, M., Smith, G. L. and Moss, B., 1982. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA. 79:7415.PubMedCrossRefGoogle Scholar
  24. Mackett, M., Smith, G. L. and Moss, B., 1984. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49:857.PubMedGoogle Scholar
  25. Massung, R. F. and Moyer, R. W., 1990. Orthopoxvirus gene expression in Xenopus laevis oocytes: a component of the virion is needed for late gene expression. J. Virol. 64:2280.PubMedGoogle Scholar
  26. Mizukami, T., Fuerst, T. R., Berger, E. A. and Moss, B., 1988. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA. 85:9273.PubMedCrossRefGoogle Scholar
  27. Moss, B., 1990a. Poxviridae and their replication, in: Virology., B. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. Melnick, T. P. Monath and B. Roizman, ed., Raven Press, New York.Google Scholar
  28. Moss, B., 1990b. Regulation of vaccinia virus transcription. Ann. Rev. Biochem. 59:661.PubMedCrossRefGoogle Scholar
  29. Moss, B., 1991. Vaccinia virus: a tool for research and vaccine development. Science. 252:1662.PubMedCrossRefGoogle Scholar
  30. Moss, B., Ahn, B.-Y., Amegadzie, B., Gershon, P. D. and Keck, J. G., 1991. Cytoplasmic transcription system encoded by vaccinia virus. J. Biol. Chem. 266:1355.PubMedGoogle Scholar
  31. Moss, B. and Flexner, C., 1987. Vaccinia virus expression vectors. Ann. Rev. Immunol. 5:305.CrossRefGoogle Scholar
  32. Panicali, D., Grzelecki, A. and Huang, C., 1986. Vaccinia virus vectors utilizing the β-galactosidase assay for rapid selection of recombinant viruses and measurement of gene expression. Gene. 47:193.PubMedCrossRefGoogle Scholar
  33. Panicali, D. and Paoletti, E., 1982. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA. 79:4927.PubMedCrossRefGoogle Scholar
  34. Patel, D. D., Ray, C. A., Drucker, R. P. and Pickup, D. J., 1988. A poxvirus-derived vector that directs high levels of expression of cloned genes in mammalian cells. Proc. Natl. Acad. Sci. USA. 85:9431.PubMedCrossRefGoogle Scholar
  35. Pattnaik, A. K. and Wertz, G. W., 1991. Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Proc. Natl. Acad. Sci. USA. 88:1379.PubMedCrossRefGoogle Scholar
  36. Perkus, M. E., Limbach, K. and Paoletti, E., 1989. Cloning and expression of foreign genes in vaccinia virus, using a host range selection system. J. Virol. 63:3829.PubMedGoogle Scholar
  37. Rich, D. P., Anderson, M. P., Gregory, R. J., Cheng, S. H., Paul, S., Jefferson, D. M., McCann, J. D., Klinger, K. W., Smith, A. E. and Welsh, M. J., 1990. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature. 347:358.PubMedCrossRefGoogle Scholar
  38. Rodriguez, J. F. and Esteban, M., 1989. Plaque size recombinants as a selectable marker to generate vaccinia virus recombinants. J. Virol. 63:997.PubMedGoogle Scholar
  39. Rupprecht, C. E., Wiktor, T. J. A., Johnston, D. H., Hamir, A. N., Dietzschold, B., Wunner, W. H., Glickman, L. T. and Koprowski, H., 1986. Oral immunization andprotection of raccooons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc. Natl. Acad. Sci. USA. 83:7947.PubMedCrossRefGoogle Scholar
  40. Shuman, S. and Moss, B., 1988. Factor-dependent transcription termination by vaccinia virus RNA polymerase: Evidence that the cis-acting termination signal is in nascent RNA. J. Biol. Chem. 2 63:6220.Google Scholar
  41. Smith, G. L. and Moss, B., 1983. Infectious poxvirus vectors have capacity for at least 25, 000 base pairs of foreign DNA. Gene. 25:21.PubMedCrossRefGoogle Scholar
  42. Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorff, J. W., 1990. Use of T7 RNA polymerase to direct the expression of cloned genes. Meth. Enzymol. 185:60.PubMedCrossRefGoogle Scholar
  43. Whitt, M. A., Buonocore, L., Rose, J. K., Ciccarone, V., Chytil, A. and Gebeyehu, G., 1991. TransfectACETM Reagent: Transient transfection frequencies >90%. Focus (Life Technologies, Inc.). 13:8.Google Scholar
  44. Whitt, M. A., Chong, L. and Rose, J. K., 1989. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J. Virol. 63:3569.PubMedGoogle Scholar
  45. Wiktor, T. J., Macfarlan, R. I., Reagan, K. J., Dietzschold, B., Curtis, P., Wunner, W., H., Kieny, M. P., Lathe, R., Lecocq, J. P., Mackett, M., Moss, B. and Koprowski, H., 1984. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA. 81:7194.PubMedCrossRefGoogle Scholar
  46. Yang, X.-C., Karschin, A., Labarca, C., Elroy-Stein, O., Moss, B., Davidson, N., Lester, H.A., 1991. Expression of ion channels and receptors in Xenopus oocytes using vaccinia virus. FASEB J. 5:2209.PubMedGoogle Scholar
  47. Yilma, T., Hsu, D., Jones, L., Owens, S., Grubman, M., Mebus, C., Yamanaka, M. and Dale, B., 1988. Protection of cattle against rinderpest with vaccinia virus recombinants exprssing the HA or F gene. Science. 242:1058.PubMedCrossRefGoogle Scholar
  48. Yuen, L. and Moss, B., 1987. Oligonuclotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc. Natl. Acad. Sci. USA. 84:6417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bernard Moss
    • 1
  1. 1.Laboratory of Viral Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations