Skip to main content

Aspergillus Niger var. Awamori as a Host for the Expression of Heterologous Genes

  • Chapter
Applications of Enzyme Biotechnology

Abstract

Among the diversity of cellular systems that have been developed for the expression of heterologous gene products, certain species of filamentous fungi possess features which make them exceptionally attractive for this purpose. These include (a) the ability to produce high levels (>25 grams per liter) of secreted protein in submerged culture, (b) a long history of safe use in the production of enzymes, antibiotics, and biochemicals which are used for human consumption, and (c) established fermentation processes which are inexpensive by comparison with animal cell culture processes done on a similar scale. These attributes have prompted several biotechnology companies to explore the use of filamentous fungi as hosts for the expression and secretion of foreign proteins. Some of the heterologous gene products which have been made using fungal expression systems are shown in Table 1. Compared to highly refined expression systems such as Escherichia coli or Saccharomyces cerevisiae, the evolution of filamentous fungi as hosts has barely begun, and many fundamental aspects of cell biology and biochemistry in fungi have not been studied. Fortunately, many of the molecular details and principles which have been elucidated in yeast and in mammalian cell systems appear to be applicable to the study of heterologous gene expression and protein secretion in filamentous fungi as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. B. Pedersen, K. A. Christensen, and B. Foltmann, Investigations on the activation of prochymosin, Eur. J. Biochem. 94: 573–580 (1979).

    Article  PubMed  CAS  Google Scholar 

  2. B. Foltmann, V. B. Pedersen, H. Jacobsen, D. Kauffman, and G Wybrandt, The complete amino acid sequence of prochymosin, Proc. Nat. Acad. Sci. USA 74: 2321–2324 (1977).

    Article  PubMed  CAS  Google Scholar 

  3. B. Foltmann, V. B. Pedersen, D. Kauffman, and G. Wybrandt, The primary structure of calf chymosin, J. Biol Chem. 254: 8447–8456 (1979).

    PubMed  CAS  Google Scholar 

  4. D. Cullen, G. L. Gray, L. J. Wilson, K.J. Hayenga, M. H. Lamsa, M. W. Rey, S. Norton, and R. M. Berka, Controlled expression and secretion of bovine chymosin in Aspergillus nidulans, BiolTechnol. 5: 369–376 (1987).

    Article  CAS  Google Scholar 

  5. M. Ward, Production of calf chymosin by Aspergillus awamori, in: “Genetics and Molecular Biology of Industrial Microorganisms,” C. L. Hershberger, S. W. Queener, and G. Hegeman, eds., American Society for Microbiology, Washington, DC (1989).

    Google Scholar 

  6. A. Harkki, J. Uusitalo, M. Bailey, M. Penttilä, and J. K. C. Knowles, A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Biol Technol 7: 596–603 (1989).

    Article  CAS  Google Scholar 

  7. E. Boel, T. Christensen, and H. F. Wöldike, Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus, European Patent Application 0 238 023 (1987).

    Google Scholar 

  8. A. Upshall, A. A. Kumar, M. C. Bailey, M. D. Parker, M. A. Favreau, K. P. Lewison, M. L. Joseph, J. M. Maraganore, and G. L. McKnight, Secretion of active human tissue plasminogen activator from the filamentous fungus Aspergillus nidulans, BiolTechnol. 5: 1301–1304 (1987).

    Article  CAS  Google Scholar 

  9. R. W. Davies, Molecular biology of a high level recombinant protein production system in Aspergillus, in: “Molecular Industrial Mycology. Systems and applications for filamentous fungi,” S. A. Leong and R. M. Berka, eds., Marcel Dekker, Inc., New York, NY (1991).

    Google Scholar 

  10. D. I. Gwynne, F. P. Buxton, S. A. Williams, S. Garven, and R. W. Davies, Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans, BiolTechnol. 5: 713–719 (1987).

    Article  CAS  Google Scholar 

  11. W.-C. Leung, G. Z. Jing, and M. F. K. Leung, Expression and secretion of human interferon gamma in filamentous fungus Achlya ambisexualis, Abstracts of the 19th Lunteran Conference on Molecular Genetics, F24(b) (1987).

    Google Scholar 

  12. W.-C. Leung, Characterization of herpes simplex virus thymidine kinase activity synthesized in recombinant filamentous fungus Achlya ambisexualis, Abstracts of the 19th Lunteran Conference on Molecular Genetics, F24(d) (1987).

    Google Scholar 

  13. D. B. Archer, D. J. Jeenes, D. A. MacKenzie, G. Brightwell, N. Lambert, G. Lowe, S. E. Radford, and C. M. Dobson, Hen egg white lysozyme expressed in and secreted from Aspergillus niger is correctly processed and folded, Bio/Technol 8:741–745(1990).

    Article  CAS  Google Scholar 

  14. I. F. Turnbull, K. Rand, N. S. Willetts, and M. J. Hynes, Expression of the Escherichia coli enterotoxin subunit B gene in Aspergillus nidulans directed by the amdS promoter, BiolTechnol 7: 169–174 (1989).

    Article  CAS  Google Scholar 

  15. R. Contreras, D. Carrez, J. R. Kinghorn, C. A. M. J. J. van den Hondel, and W. Fiers, Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6, Bio/Technol. 9:378–381(1991).

    Article  CAS  Google Scholar 

  16. B. Foltmann, Gastric proteinases. Structure, function, evolution, and mechanism of action, Essays Biochem. 17: 53–84 (1981).

    Google Scholar 

  17. K. Nishimori, N. Shimizu, Y Kawazuchi, M. Hidaka, T. Uozumi, and T. Beppu, Expression of cloned calf prochymosin gene sequences in Escherichia coli, Gene 19: 337–344 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. J. S. Emtage, S. Angal, M. T. Doel, T. J. R. Harris, B. Jenkins, G. Lilley, and P. A. Lowe, Synthesis of calf prochymosin (prorennin) in Escherichia coli, Proc. Nat. Acad. Sci. USA 80: 3671–3675 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. J. Mellor, M. J. Dobson, N. A. Roberts, M. F. Tuite, J. S. Emtage, S. White, P. A. Lowe, T. Patel, A. J. Kingsman, and S. M. Kingsman, Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae, Gene 24: 1–14 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. D. T. Moir, J. Mao, M. J. Duncan, R. A. Smith, and T. Kohno, Production of calf chymosin by the yeast Saccharomyces cerevisiae, in: “Developments in Industrial Microbiology,” Vol. 26, L. Underkofler, ed., Society for Industrial Microbiology, Arlington, VA (1985).

    Google Scholar 

  21. C. G. Goff, D. T. Moir, T. Kohno, T. C. Gravius, R. A. Smith, E. Yamasaki, and A. Taunton-Rigby, Expression of calf prochymosin in Saccharomyces cerevisiae, Gene 27: 35–46 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. J. A. van den Berg, K. J. van der Laken, A. J. J. van Ooyen, T. C. H. M. Renniers, K. Rietveld, A. Schaap, A. J. Brake, R. J. Bishop, K. Schultz, D. Moyer, M. Richman, and J. R. Schuster, Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin, Bio/Technol 8: 135–139 (1990).

    Article  Google Scholar 

  23. D. J. Ballance, F. P. Buxton, and G. Turner, Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa, Biochem. Biophys. Res. Commun. 112: 284–289 (1983).

    Article  CAS  Google Scholar 

  24. D. J. Ballance and G. Turner, Development of a high-frequency transforming vector for Aspergillus nidulans, Gene 36: 321–331 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. E. Boel, M. T. Hansen, I. Hjort, I. Høegh, and N. P. Fiil, Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger, EMBO J. 3: 1581–1585 (1984).

    PubMed  CAS  Google Scholar 

  26. J. H. Nunberg, J. H. Meade, G. Cole, F. C. Lawyer, P. McCabe, V. Schweickart, R. Tal, V. P. Wittman, J. E. Flatgaard, and M. A. Innis, Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori, Mol. Cell. Biol. 4: 2306–2315 (1984).

    PubMed  CAS  Google Scholar 

  27. M. Lamsa and P. Bloebaum, Mutation and screening to increase chymosin yield in a genetically-engineered strain of Aspergillus awamori, J. Industr. Microbiol. 5: 229–238 (1990).

    Article  CAS  Google Scholar 

  28. V. I. Ostoslavskaya, L. P. Revina, E. K. Kotlova, I. A. Surova, E. D. Levin, E. A. Timokhina, and V. M. Stepanov, Primary structure of aspergillopepsin A — an aspartyl proteinase from Aspergillus awamori, Bioorg. Khim. 8: 1030–1047 (1986).

    Google Scholar 

  29. R. M. Berka, M. Ward, L. J. Wilson, K. J. Hayenga, K. H. Kodama, L. P. Carlomagno, and S. A. Thompson, Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori, Gene 86: 153–162 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. K. Takahashi, M. Tanokura, H. Inoue, M. Kojima, Y. Muto, M. Yamasaki, O. Makabe, T. Kimura, T. Takizawa, T. Hamaya, E. Suzuki, and H. Miyano, Structure and function of a pepstatin-insensitive acid proteinase from Aspergillus niger var. macrosporus, Abstracts of the Aspartic Proteinase Conference, Sonoma, CA (1990).

    Google Scholar 

  31. G. L. Gilliland, E. L. Winborne, J. Nachman, and A. Wlodawer, The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution, Proteins 8: 82–101 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. A. M. Bech and B. Foltmann, Partial primary structure of Mucor miehei protease, Neth. Milk Dairy J. 35: 275–280 (1981).

    CAS  Google Scholar 

  33. M. W. Rey, R. M. Berka, L. J. Wilson, and M. Ward, Cloning vectors for filamentous fungi: construction of a novel pUC19-derivative containing the Neurospora crassapyr4 gene, Abstracts of the 14th Fungal Biology Conference, Asilomar, (1987).

    Google Scholar 

  34. K. Kuchler, R. E. Sterne, and J. Thorner, Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells, EMBO J. 8: 3973–3984 (1989).

    PubMed  CAS  Google Scholar 

  35. J. F. Sambrook, The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum, Cell 61: 197–199 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. J. P. McGrath and A. Varshavsky, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein, Nature 340: 400–404 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. C. Booth and G. L. E. Koch, Perturbation of cellular calcium induces secretion of luminal ER proteins, Cell 59: 729–737 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. H. K. Rudolph, A. Antebi, G. R. Fink, C. M. Buckley, T. E. Dorman, J. LeVitre, L. S. Davidow, J. Mao, and D. T. Moir, The secretory pathway is perturbed by mutations in PMRI, a member of a Ca2+-ATPase family, Cell 58: 133–145 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. G. R. Willsky, J. O. Leung, P. V. Offermann, Jr., E. K. Plotnick, and S. F. Dosch, Isolation and characterization of vanadate-resistant mutants of Saccharomyces cerevisiae, J. Bacteriol. 164: 611–617 (1985).

    PubMed  CAS  Google Scholar 

  40. C. Kanik-Ennulat and N. Neff, Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control, Mol. Cell.Biol. 10:898–909(1990).

    PubMed  CAS  Google Scholar 

  41. S. M. Penningroth, Erythro-9-[3-(2-hydroxynonyl)]adenine and vanadate as probes for microtubule-based cytoskeletal mechanochemistry, Methods Enzymol. 134: 477–487 (1986).

    Article  PubMed  CAS  Google Scholar 

  42. L. Ballou, R. A. Hitzeman, M. S. Lewis, and C. E. Ballou, Vanadate-resistant yeast mutants are defective in protein glycosylation, Proc. Nat. Acad. Sci. USA 88: 3209–3213 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. G. Bradley, P. F. Juranka, and V. Ling, Mechanism of multidrug resistance, Biochim. Biophys Acta 948: 87–128 (1988).

    PubMed  CAS  Google Scholar 

  44. A. J. Brake, C. Brenner, R. Najariam, P. Laybourn, and J. Merryweather, in: “Protein Transport and Secretion,” M. J. Gething, ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1985).

    Google Scholar 

  45. A. Rubartelli, F. Cozzolino, M. Talio, and R. Sitia, A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence, EMBO J. 9: 1503–1510 (1990).

    PubMed  CAS  Google Scholar 

  46. M. Ward, L. J. Wilson, K. H. Kodama, M. W. Rey, and R. M. Berka, Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion, BiolTechnol. 8: 435–440 (1990).

    Article  CAS  Google Scholar 

  47. N. S. Dunn-Coleman, P. Bloebaum, R. M. Berka, E. Bodie, N. Robinson, G. Armstrong, M. Ward, M. Przetak, G. L. Carter, R. LaCost, L. J. Wilson, K. H. Kodama, E. F. Baliu, B. Bower, M. Lamsa, and H. Heinsohn, Commercially viable levels of chymosin production by Aspergillus, submitted for publication.

    Google Scholar 

  48. J. Fiedurek, A. Paszcznski, G. Ginalska, and Z. Ilczuk, Selection of amylolytically active Aspergillus niger mutants to 2-deoxy-D-glucose, Zentralbl. Mikrobiol. 142: 407–412 (1987).

    PubMed  CAS  Google Scholar 

  49. K. E. Allen, M. T. McNally, H. S. Lowendorf, C. W. Slayman, and S. J. Free, Deoxyglucose-resistant mutants of Neurospora crassa: isolation, mapping, and biochemical characterization, J. Bacteriol. 171: 53–58 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berka, R.M. et al. (1991). Aspergillus Niger var. Awamori as a Host for the Expression of Heterologous Genes. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics