Aspergillus Niger var. Awamori as a Host for the Expression of Heterologous Genes

  • Randy M. Berka
  • Frank T. Bayliss
  • Peggy Bloebaum
  • Daniel Cullen
  • Nigel S. Dunn-Coleman
  • Katherine H. Kodama
  • Kirk J. Hayenga
  • Ronald A. Hitzeman
  • Michael H. Lamsa
  • Melinda M. Przetak
  • Michael W. Rey
  • Lori J. Wilson
  • Michael Ward
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Among the diversity of cellular systems that have been developed for the expression of heterologous gene products, certain species of filamentous fungi possess features which make them exceptionally attractive for this purpose. These include (a) the ability to produce high levels (>25 grams per liter) of secreted protein in submerged culture, (b) a long history of safe use in the production of enzymes, antibiotics, and biochemicals which are used for human consumption, and (c) established fermentation processes which are inexpensive by comparison with animal cell culture processes done on a similar scale. These attributes have prompted several biotechnology companies to explore the use of filamentous fungi as hosts for the expression and secretion of foreign proteins. Some of the heterologous gene products which have been made using fungal expression systems are shown in Table 1. Compared to highly refined expression systems such as Escherichia coli or Saccharomyces cerevisiae, the evolution of filamentous fungi as hosts has barely begun, and many fundamental aspects of cell biology and biochemistry in fungi have not been studied. Fortunately, many of the molecular details and principles which have been elucidated in yeast and in mammalian cell systems appear to be applicable to the study of heterologous gene expression and protein secretion in filamentous fungi as well.


Filamentous Fungus Shake Flask Culture Aspergillus Nidulans Multiple Drug Resistance Phenyl Methyl Sulfonyl Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. B. Pedersen, K. A. Christensen, and B. Foltmann, Investigations on the activation of prochymosin, Eur. J. Biochem. 94: 573–580 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Foltmann, V. B. Pedersen, H. Jacobsen, D. Kauffman, and G Wybrandt, The complete amino acid sequence of prochymosin, Proc. Nat. Acad. Sci. USA 74: 2321–2324 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    B. Foltmann, V. B. Pedersen, D. Kauffman, and G. Wybrandt, The primary structure of calf chymosin, J. Biol Chem. 254: 8447–8456 (1979).PubMedGoogle Scholar
  4. 4.
    D. Cullen, G. L. Gray, L. J. Wilson, K.J. Hayenga, M. H. Lamsa, M. W. Rey, S. Norton, and R. M. Berka, Controlled expression and secretion of bovine chymosin in Aspergillus nidulans, BiolTechnol. 5: 369–376 (1987).CrossRefGoogle Scholar
  5. 5.
    M. Ward, Production of calf chymosin by Aspergillus awamori, in: “Genetics and Molecular Biology of Industrial Microorganisms,” C. L. Hershberger, S. W. Queener, and G. Hegeman, eds., American Society for Microbiology, Washington, DC (1989).Google Scholar
  6. 6.
    A. Harkki, J. Uusitalo, M. Bailey, M. Penttilä, and J. K. C. Knowles, A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Biol Technol 7: 596–603 (1989).CrossRefGoogle Scholar
  7. 7.
    E. Boel, T. Christensen, and H. F. Wöldike, Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus, European Patent Application 0 238 023 (1987).Google Scholar
  8. 8.
    A. Upshall, A. A. Kumar, M. C. Bailey, M. D. Parker, M. A. Favreau, K. P. Lewison, M. L. Joseph, J. M. Maraganore, and G. L. McKnight, Secretion of active human tissue plasminogen activator from the filamentous fungus Aspergillus nidulans, BiolTechnol. 5: 1301–1304 (1987).CrossRefGoogle Scholar
  9. 9.
    R. W. Davies, Molecular biology of a high level recombinant protein production system in Aspergillus, in: “Molecular Industrial Mycology. Systems and applications for filamentous fungi,” S. A. Leong and R. M. Berka, eds., Marcel Dekker, Inc., New York, NY (1991).Google Scholar
  10. 10.
    D. I. Gwynne, F. P. Buxton, S. A. Williams, S. Garven, and R. W. Davies, Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans, BiolTechnol. 5: 713–719 (1987).CrossRefGoogle Scholar
  11. 11.
    W.-C. Leung, G. Z. Jing, and M. F. K. Leung, Expression and secretion of human interferon gamma in filamentous fungus Achlya ambisexualis, Abstracts of the 19th Lunteran Conference on Molecular Genetics, F24(b) (1987).Google Scholar
  12. 12.
    W.-C. Leung, Characterization of herpes simplex virus thymidine kinase activity synthesized in recombinant filamentous fungus Achlya ambisexualis, Abstracts of the 19th Lunteran Conference on Molecular Genetics, F24(d) (1987).Google Scholar
  13. 13.
    D. B. Archer, D. J. Jeenes, D. A. MacKenzie, G. Brightwell, N. Lambert, G. Lowe, S. E. Radford, and C. M. Dobson, Hen egg white lysozyme expressed in and secreted from Aspergillus niger is correctly processed and folded, Bio/Technol 8:741–745(1990).CrossRefGoogle Scholar
  14. 14.
    I. F. Turnbull, K. Rand, N. S. Willetts, and M. J. Hynes, Expression of the Escherichia coli enterotoxin subunit B gene in Aspergillus nidulans directed by the amdS promoter, BiolTechnol 7: 169–174 (1989).CrossRefGoogle Scholar
  15. 15.
    R. Contreras, D. Carrez, J. R. Kinghorn, C. A. M. J. J. van den Hondel, and W. Fiers, Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6, Bio/Technol. 9:378–381(1991).CrossRefGoogle Scholar
  16. 16.
    B. Foltmann, Gastric proteinases. Structure, function, evolution, and mechanism of action, Essays Biochem. 17: 53–84 (1981).Google Scholar
  17. 17.
    K. Nishimori, N. Shimizu, Y Kawazuchi, M. Hidaka, T. Uozumi, and T. Beppu, Expression of cloned calf prochymosin gene sequences in Escherichia coli, Gene 19: 337–344 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    J. S. Emtage, S. Angal, M. T. Doel, T. J. R. Harris, B. Jenkins, G. Lilley, and P. A. Lowe, Synthesis of calf prochymosin (prorennin) in Escherichia coli, Proc. Nat. Acad. Sci. USA 80: 3671–3675 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Mellor, M. J. Dobson, N. A. Roberts, M. F. Tuite, J. S. Emtage, S. White, P. A. Lowe, T. Patel, A. J. Kingsman, and S. M. Kingsman, Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae, Gene 24: 1–14 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    D. T. Moir, J. Mao, M. J. Duncan, R. A. Smith, and T. Kohno, Production of calf chymosin by the yeast Saccharomyces cerevisiae, in: “Developments in Industrial Microbiology,” Vol. 26, L. Underkofler, ed., Society for Industrial Microbiology, Arlington, VA (1985).Google Scholar
  21. 21.
    C. G. Goff, D. T. Moir, T. Kohno, T. C. Gravius, R. A. Smith, E. Yamasaki, and A. Taunton-Rigby, Expression of calf prochymosin in Saccharomyces cerevisiae, Gene 27: 35–46 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    J. A. van den Berg, K. J. van der Laken, A. J. J. van Ooyen, T. C. H. M. Renniers, K. Rietveld, A. Schaap, A. J. Brake, R. J. Bishop, K. Schultz, D. Moyer, M. Richman, and J. R. Schuster, Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin, Bio/Technol 8: 135–139 (1990).CrossRefGoogle Scholar
  23. 23.
    D. J. Ballance, F. P. Buxton, and G. Turner, Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa, Biochem. Biophys. Res. Commun. 112: 284–289 (1983).CrossRefGoogle Scholar
  24. 24.
    D. J. Ballance and G. Turner, Development of a high-frequency transforming vector for Aspergillus nidulans, Gene 36: 321–331 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Boel, M. T. Hansen, I. Hjort, I. Høegh, and N. P. Fiil, Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger, EMBO J. 3: 1581–1585 (1984).PubMedGoogle Scholar
  26. 26.
    J. H. Nunberg, J. H. Meade, G. Cole, F. C. Lawyer, P. McCabe, V. Schweickart, R. Tal, V. P. Wittman, J. E. Flatgaard, and M. A. Innis, Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori, Mol. Cell. Biol. 4: 2306–2315 (1984).PubMedGoogle Scholar
  27. 27.
    M. Lamsa and P. Bloebaum, Mutation and screening to increase chymosin yield in a genetically-engineered strain of Aspergillus awamori, J. Industr. Microbiol. 5: 229–238 (1990).CrossRefGoogle Scholar
  28. 28.
    V. I. Ostoslavskaya, L. P. Revina, E. K. Kotlova, I. A. Surova, E. D. Levin, E. A. Timokhina, and V. M. Stepanov, Primary structure of aspergillopepsin A — an aspartyl proteinase from Aspergillus awamori, Bioorg. Khim. 8: 1030–1047 (1986).Google Scholar
  29. 29.
    R. M. Berka, M. Ward, L. J. Wilson, K. J. Hayenga, K. H. Kodama, L. P. Carlomagno, and S. A. Thompson, Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori, Gene 86: 153–162 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Takahashi, M. Tanokura, H. Inoue, M. Kojima, Y. Muto, M. Yamasaki, O. Makabe, T. Kimura, T. Takizawa, T. Hamaya, E. Suzuki, and H. Miyano, Structure and function of a pepstatin-insensitive acid proteinase from Aspergillus niger var. macrosporus, Abstracts of the Aspartic Proteinase Conference, Sonoma, CA (1990).Google Scholar
  31. 31.
    G. L. Gilliland, E. L. Winborne, J. Nachman, and A. Wlodawer, The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution, Proteins 8: 82–101 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    A. M. Bech and B. Foltmann, Partial primary structure of Mucor miehei protease, Neth. Milk Dairy J. 35: 275–280 (1981).Google Scholar
  33. 33.
    M. W. Rey, R. M. Berka, L. J. Wilson, and M. Ward, Cloning vectors for filamentous fungi: construction of a novel pUC19-derivative containing the Neurospora crassapyr4 gene, Abstracts of the 14th Fungal Biology Conference, Asilomar, (1987).Google Scholar
  34. 34.
    K. Kuchler, R. E. Sterne, and J. Thorner, Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells, EMBO J. 8: 3973–3984 (1989).PubMedGoogle Scholar
  35. 35.
    J. F. Sambrook, The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum, Cell 61: 197–199 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    J. P. McGrath and A. Varshavsky, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein, Nature 340: 400–404 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Booth and G. L. E. Koch, Perturbation of cellular calcium induces secretion of luminal ER proteins, Cell 59: 729–737 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    H. K. Rudolph, A. Antebi, G. R. Fink, C. M. Buckley, T. E. Dorman, J. LeVitre, L. S. Davidow, J. Mao, and D. T. Moir, The secretory pathway is perturbed by mutations in PMRI, a member of a Ca2+-ATPase family, Cell 58: 133–145 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    G. R. Willsky, J. O. Leung, P. V. Offermann, Jr., E. K. Plotnick, and S. F. Dosch, Isolation and characterization of vanadate-resistant mutants of Saccharomyces cerevisiae, J. Bacteriol. 164: 611–617 (1985).PubMedGoogle Scholar
  40. 40.
    C. Kanik-Ennulat and N. Neff, Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control, Mol. Cell.Biol. 10:898–909(1990).PubMedGoogle Scholar
  41. 41.
    S. M. Penningroth, Erythro-9-[3-(2-hydroxynonyl)]adenine and vanadate as probes for microtubule-based cytoskeletal mechanochemistry, Methods Enzymol. 134: 477–487 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    L. Ballou, R. A. Hitzeman, M. S. Lewis, and C. E. Ballou, Vanadate-resistant yeast mutants are defective in protein glycosylation, Proc. Nat. Acad. Sci. USA 88: 3209–3213 (1991).PubMedCrossRefGoogle Scholar
  43. 43.
    G. Bradley, P. F. Juranka, and V. Ling, Mechanism of multidrug resistance, Biochim. Biophys Acta 948: 87–128 (1988).PubMedGoogle Scholar
  44. 44.
    A. J. Brake, C. Brenner, R. Najariam, P. Laybourn, and J. Merryweather, in: “Protein Transport and Secretion,” M. J. Gething, ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1985).Google Scholar
  45. 45.
    A. Rubartelli, F. Cozzolino, M. Talio, and R. Sitia, A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence, EMBO J. 9: 1503–1510 (1990).PubMedGoogle Scholar
  46. 46.
    M. Ward, L. J. Wilson, K. H. Kodama, M. W. Rey, and R. M. Berka, Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion, BiolTechnol. 8: 435–440 (1990).CrossRefGoogle Scholar
  47. 47.
    N. S. Dunn-Coleman, P. Bloebaum, R. M. Berka, E. Bodie, N. Robinson, G. Armstrong, M. Ward, M. Przetak, G. L. Carter, R. LaCost, L. J. Wilson, K. H. Kodama, E. F. Baliu, B. Bower, M. Lamsa, and H. Heinsohn, Commercially viable levels of chymosin production by Aspergillus, submitted for publication.Google Scholar
  48. 48.
    J. Fiedurek, A. Paszcznski, G. Ginalska, and Z. Ilczuk, Selection of amylolytically active Aspergillus niger mutants to 2-deoxy-D-glucose, Zentralbl. Mikrobiol. 142: 407–412 (1987).PubMedGoogle Scholar
  49. 49.
    K. E. Allen, M. T. McNally, H. S. Lowendorf, C. W. Slayman, and S. J. Free, Deoxyglucose-resistant mutants of Neurospora crassa: isolation, mapping, and biochemical characterization, J. Bacteriol. 171: 53–58 (1989).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Randy M. Berka
    • 1
  • Frank T. Bayliss
    • 2
  • Peggy Bloebaum
    • 1
  • Daniel Cullen
    • 1
  • Nigel S. Dunn-Coleman
    • 1
  • Katherine H. Kodama
    • 1
  • Kirk J. Hayenga
    • 1
  • Ronald A. Hitzeman
    • 3
  • Michael H. Lamsa
    • 1
  • Melinda M. Przetak
    • 1
    • 2
  • Michael W. Rey
    • 1
  • Lori J. Wilson
    • 1
  • Michael Ward
    • 1
  1. 1.Genencor International Inc.South San FranciscoUSA
  2. 2.San Francisco State UniversitySan FranciscoUSA
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations