Advertisement

Methods for the Radiohalogenation of Antibodies

  • Michael R. Zalutsky
  • Pradeep K. Garg
  • Ganesan Vaidyanathan
  • Sudha Garg
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

One of the main goals of radiopharmaceutical chemistry is the development of compounds that can be used for the identification or erradication of specific cell populations. Since monoclonal antibodies (MAbs) can be generated, at least in principle, against almost any cellular determinant, there has been a great deal of interest in using MAbs as a mechanism for targeting radionuclides. Although diagnostic and therapeutic investigations with labeled MAbs have focused on their applications in the management of cancer, labeled MAbs also may be useful in the noninvasive diagnosis of infections and heart disease. Numerous problems must be solved before radiolabeled MAbs can make a meaningful impact on the clinical domain, including the development of better MAb labeling methods than those that have been utilized in clinical studies.

Keywords

Alpha Particle Linear Energy Transfer Label Protein Thyroid Uptake Positron Emission Tomogra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaij, C., Tschrotts, W.R.J.M., Lendner, L., and Feltkamp, T.E.W., 1975, The preparation of astatine labeled proteins, Int. J. Appl. Radiat. Isot. 26:25.PubMedCrossRefGoogle Scholar
  2. Barendsen, G.W., Koot, C.J., van Kersen, G.R., Bewley, D.K., Field, S.B., and Parnell, C.J., 1966, The effect of oxygen on the impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET, Int. J. Radiat. Biol. 10:317.CrossRefGoogle Scholar
  3. Bolton, A.E. and Hunter, W.M., 1973, The labelling of proteins to high specific activities by conjugation to a I-125 containing acylating agent, Biochem. J. 133:529.PubMedGoogle Scholar
  4. Bolton, A.E. Lee-Own, V., McLean, R.K., and Challand, G.S., 1979, Three different radioiodination methods for human spleen ferritin compared, Clin. Chem. 25:1826.PubMedGoogle Scholar
  5. Delaloye, B., Bischof-Delaloye, A., Buchegger, F., von Fliedner, V., Grob, J.-P., Volant, J.-C., Pettavel, J., and Mach, J.-P., 1986, Detection of colorectal carcinoma by emission-computerized tomography after injection of 123I-labeled Fab or F(ab’)2 fragments from monoclonal anti-carcinoembryonic antigen antibodies, J. Clin. Invest. 77:301.PubMedCrossRefGoogle Scholar
  6. Dumas, P., Maziere, B., Autissier, N., and Michel, R., 1973, Specificite de l’iodotyrosine desiodase des microsomes thyroidiens et hepatiques, Biochim. Biophys. Acta 293:36.PubMedCrossRefGoogle Scholar
  7. Fraker, P.J., and Speck, J.C., 1978, Protein and cell membrane iodinations with a sparingly soluble chloramide 1, 3, 4, 6-tetrachloro-3∝ −6∝-diphenylglycouril, Biochem. Biophys. Res. Comm., 80:849.PubMedCrossRefGoogle Scholar
  8. Friedman, A.M., Zalutsky, M.R., Wung, W., Buckingham, F., Harper, P.V., Sherr, G.H. Wainer, B., Hunter, R.L., Appelman, E.H., Rothberg, R.M., Fitch, F.W., Stuart, F.P., and Simonian, S.J., 1977, Preparation of a biologically stable and immunogenically competent astatinated protein, Int. J. Nucl. Med. Biol. 4:219.PubMedCrossRefGoogle Scholar
  9. Garg, P.K, Slade, S.K., Harrison, C.L., and Zalutsky, M.R., 1989a, Labeling proteins using aryl iodide acylation agents: Influence of meta vs para substitution on in vivo stability, Nucl. Med. Biol., 16:669.Google Scholar
  10. Garg, P.K., Archer, Jr., G.E., Bigner, D.D., and Zalutsky, M.R., 1989b, Synthesis of radioiodinated N-succinimidyl iodobenzoate: Optimization for use in antibody labelling, Appl. Radiat. Isot., 40:485.CrossRefGoogle Scholar
  11. Garg, P.K., Harrison, C.L., and Zalutsky, M.R., 1990, Comparative tissue distribution in mice of the ∝-emitter 211At and 131 I as labels of a monoclonal antibody and F(ab’)2 fragment, Cancer Res, 50:3514.PubMedGoogle Scholar
  12. Garg, S., Garg, P.K., and Zalutsky, M.R., 1991a, N-succinimidyl 5-(trialkylstannyl)-3-pyridinecarboxylates: A new class of reagents for protein radioiodination, Bioconiugate Chem., 2:50.CrossRefGoogle Scholar
  13. Garg, P.K., Garg, S., and Zalutsky, M.R., 1991b, Fluorine-18 labeling of monoclonal antibodies and fragments with preservation of immunoreactivity, Bioconjugate Chem., 2:44.CrossRefGoogle Scholar
  14. Gershengorn, M.C., Glinoer, D., and Robbins, J., 1980, Transport and metabolism of thyroid hormones, In: “The Thyroid Gland”, 81, M. DeVisscher, ed., Raven Press, New York.Google Scholar
  15. Harrison, A. and Royle, L., 1984, Preparation of a At-211-IgG conjugate which is stable in vivo, Int. J. Appl. Radiat. Isot. 35:1005.PubMedCrossRefGoogle Scholar
  16. Hayes, D.F., Zalutsky, M.R., Kaplan, W., Noska, M., Thor, A., Colcher, D. and Kufe, D.W., 1986, Pharmacokinetics of radiolabeled monoclonal antibody B6.2 in patients with metastatic breast cancer, Cancer Res. 46:3157.PubMedGoogle Scholar
  17. Hayes, D.F., Noska, M.A., Kufe, D.W., and Zalutsky, M.R., 1988, Effect of radioiodination on the binding of monoclonal antibody DF3 to breast carcinoma cells, Nucl. Med. Biol., 15:235.Google Scholar
  18. Hnatowich, D.J., Virzi, F., and Doherty, P.W., 1985, DTPA-coupled antibodies labelled with yitrium-90, J. Nucl. Med. 26:503.PubMedGoogle Scholar
  19. Hunter, W.M., and Greenwood, F.C., 1962, Preparation of iodine-131 labelled human growth hormone of high specific activity, Nature 194:495.PubMedCrossRefGoogle Scholar
  20. Kilbourn, M.R., Dence, C.S., Welch, M.J., and Mathias, C.J., 1987, Fluorine-18 labeling of proteins, J. Nucl. Med. 28:462.PubMedGoogle Scholar
  21. Koehrle, J., Auf’mkolk, M., Rokos, H., Hesch, R.D., and Cody, V., 1986, Rat liver iodothyronine ligand-binding site, J. Biol. Chem. 261:11613.PubMedGoogle Scholar
  22. Larson, S.M., and Carrasquillo, J.A., 1988, Advantages of radioiodine over radioindium labeled monoclonal antibodies for imaging solid tumors, Nucl. Med. Biol. 15:231.Google Scholar
  23. Leonard, J.L., and Rosenbert, I.N., 1977, Subcellular distribution of thyroxine 5′p-deiodinase in the rat kidney: A plasma membrane location, Endocrinology 103:274.CrossRefGoogle Scholar
  24. Marchalonis, J.J., 1969, An enzymatic method for the trace iodination of immunoglobulins and other proteins, Biochem. J. 113:299.PubMedGoogle Scholar
  25. Narula, A.S. and Zalutsky, M.R., 1988, Synthesis of N-succinimidyl-2, 4-dimethoxy-3-(tri-n-butylstannyl)benzoate via regio-specifically generated lithium 2, 4-dimethoxy-3-lithiobenzoate, Tetrahedron Lett. 29:4385.CrossRefGoogle Scholar
  26. Narula, A.S., and Zalutsky, M.R., 1989, No-carrier-added astatination of N-succinimidyl-3-(tri-n-butylstannyl)benzoate (ATE) via electrophilic destannylation, Radiochimica Acta, 47:131.Google Scholar
  27. Pressman, D., Day, E.D., and Blau, M., 1957, The use of paired labeling in the determination of tumor-localizing antibodies, Cancer Res., 17:845.PubMedGoogle Scholar
  28. Shechter, Y., Burstein, Y., and Patchornik, A., 1975, Selective oxidation of methionine residues in proteins, Biochem., 14:4497.CrossRefGoogle Scholar
  29. Smallridge, R.C., Burman, K.D., Ward, K.E., Wartofsky, L., Dimond, R.C., Wright, F.D., and Latham, K.R., 1981, 3′5-Diiodothyronine to 3′-monoiodothhyronine conversion in the fed and fasted rat: Enzyme characteristics and evidence for two distinct 5′-deiodinases, Endocrinology 108:2336.PubMedCrossRefGoogle Scholar
  30. Stanbury, J.B., and Morris, M.L., 1958, Deiodination of diiodotyrosine by cell-free systems, J. Biol. Chem., 233:106.PubMedGoogle Scholar
  31. Sullivan, D.C., Silva, J.S., Cox, C.E., Haagensen, Jr, D.E., Harris, C.C., Briner, W.H., and Wells, Jr., S.A., 1982, Localization of I-131 labeled goat and primate anticarcinoembryonic antigen (CEA) antibodies in patients with cancer, Invest. Radiol., 17:350.PubMedCrossRefGoogle Scholar
  32. Vaidyanathan, G., and Zalutsky, M.R., 1990a, Radioiodination of antibodies via N-succinimidyl 2, 4-dimethoxy-3-(tri-alkylstannyl)benzoates, Bioconiugate Chem., 1:387.CrossRefGoogle Scholar
  33. Vaidyanathan, G., and Zalutsky, M.R., 1990b, Protein radiohalogenation: Observations on the design of N-succinimidyl ester acylation agents, Bioconjuqate Chem., 1:269.CrossRefGoogle Scholar
  34. Vaughan, A.T.M. and Fremlin, J.H., 1978, The preparation of astatine labeled proteins using an electrophilic reaction, Int. J. Nucl., Med. Biol. 5:229.CrossRefGoogle Scholar
  35. Visser, G.W.M., Diemer, E.L., and Kaspersen, F.M., 1979, The preparation and stability of astatotyrosine and astatoiodotyrosine, Int. J. Appl. Radiat. Isot. 30:749.CrossRefGoogle Scholar
  36. Wilbur, D.S., Hadley, S.W., Hylarides, M.D., Abrams, P.G., Beaumier, P.A., Morgan, A.C., Reno, J.M., and Fritzberg, A.R., 1989, Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer, J. Nucl. Med. 30:216.PubMedGoogle Scholar
  37. Wursthorn, K.R., Kuivila, H.G., and Smith, G.F., 1978, Nucleophilic aromatic substitution by organostannylsodiums. A second-order reaction displaying a solvent cage effect, J. Am. Chem. Soc. 100:2779.CrossRefGoogle Scholar
  38. Zalutsky, M.R., Colcher, D., Kaplan, W., and Kufe, D.F., 1985, Radioiodinated B6.2 monoclonal antibody: Further characterization of a potential radicpharmaceutical for the identification of breast tumors, Int. J. Nucl. Med. Biol., 12:227.PubMedCrossRefGoogle Scholar
  39. Zalutsky, M.R. and Narula, A.S., 1987, A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine, Appl. Radiat. Isot. 38:1051.CrossRefGoogle Scholar
  40. Zalutsky, M.R. and Narula, A.S., 1988a, Radiohalogenation of a monoclonal antibody using an N-succinimidyl 3-(tri-n-butylstannyl)benzoate intermediate, Cancer Res., 48:1446.PubMedGoogle Scholar
  41. Zalutsky, M.R., and Narula, A.S., 1988b, Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate, Appl. Radiat. Isot., 3:227.Google Scholar
  42. Zalutsky, M.R., Noska, M.A., Colapinto, E.V., Garg, P.K., and Bigner, D.D., 1989a, Enhanced tumor localization and in vivo stability of a monoclonal antibody radioiodinated using N-succinimidyl 3-(tri-n-butylstannyl)benzoate, Cancer Res., 49:5543.PubMedGoogle Scholar
  43. Zalutsky, M.R., Garg, P.K., Friedman, H.S., and Bigner, D.D., 1989b, Labeling monoclonal antibodies and F (ab′) 2 fragments with the ∝-particle-emitting nuclide astatine-211: Preservation of immunoreactivity and in vivo localizing capacity, Proc. Natl. Acad. Sci. (USA), 86:7149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michael R. Zalutsky
    • 1
  • Pradeep K. Garg
    • 1
  • Ganesan Vaidyanathan
    • 1
  • Sudha Garg
    • 1
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations