Genetic Alterations Which Facilitate Protein Purification: Applications in the Biopharmaceutical Industry

  • Helmut M. Sassenfeld
  • Michael Deeley
  • John Rubero
  • Janet C. Shriner
  • Hassan Madani
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


A large number of genetic modifications have been employed to facilitate the purification of numerous recombinant proteins. These techniques have been used for both commercial and research purposes and in a variety of different expression systems. This paper will explore the value of this approach as a research tool and focus primarily on two methods. The first method utilizes a metal-chelate fusion and the second an immuno-affinity fusion. These two methods can be successfully employed in virtually any expression system. The resulting purified protein can be used for a variety of research purposes including refolding studies and pre-clinical biology.


Recombinant Protein Genetic Engineering Technique Refold Condition Metal Chelate Chromatography Enterokinase Cleavage Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Brewer, B. L Haymore, T. P. Hopp and H. M. Sassenfeld, Engineering Proteins to Enable Their Isolation in a biologically active form. In: Purification and Analysis of Recombinant Proteins. R. Seetharam, S. K. Sharma eds. Marcel Dekker, Inc., NY (1991) pp. 239–266.Google Scholar
  2. 2.
    M. Uhlen and T. Moks, Gene fusions for purpose of expression: An Introduction. In: Methods in Enzymology. R. Williamson, ed. Academic Press, NY (1981) pp. 129–143.Google Scholar
  3. 3.
    H.M. Sassenfeld, Engineering proteins for purification. TIBTECH 8:88 (1990).CrossRefGoogle Scholar
  4. 4.
    R. Sherwood, Protein fusions: Bioseparation and application. TIBTECH 9:1 (1991).CrossRefGoogle Scholar
  5. 5.
    H. M. Sassenfeld and S. J. Brewer, A polypeptide fusion designed for the purification of recombinant proteins. Bio/Technology 2:76 (1984).CrossRefGoogle Scholar
  6. 6.
    S. J. Brewer and H. M. Sassenfeld, The purification of recombinant proteins using C-terminal polyarginine fusions. Trends in Biotechnol. 5:119 (1985).CrossRefGoogle Scholar
  7. 7.
    H. M. Sassenfeld, Engineering proteins for purification: Use of a C-terminal polyarginine fusion. PhD Thesis, University of Liverpool, UK.Google Scholar
  8. 8.
    A. J. Brake, J. P. Merryweather, D. G. Coit, U. A. Heberlein, F. R. Masiarz, G. T. Mullenbach, M. S. Urdea, P. Valenzuela, and P. J. Barr, α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:4642 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Persson, M. G. Bergstrand, L. Bulow, and K. Mosbach, Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal. Biochem. 172:330 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    S. S. Suh, B. L Haymore, and F. H. Arnold, Characterization of His-X3-His sites in α-helices of synthetic metal-binding bovine somatotropin. Proteins in Engineering, in press.Google Scholar
  11. 11.
    J. Porath, J. Carlsson, I. Olsson, and G. Belfrage, Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    E. S. Hemdan, Y. Zhao, E. Sulkowski, and J. Porath, Surface topography of histidine residues: A facile probe by immobilized metal ion affinity chromatography. Proc. Natl. Acad. Sci. USA 86:1811–1815.Google Scholar
  13. 13.
    F. H. Arnold, Metal-affinity separations: A new dimension in protein processing. Bio/Technology 9:151 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    B. L Haymore, G. S. Bild, S. S. Abdel-Meguid, M. C. Clare, G. G. Krivi, W. J. Salsgiver, and N. R. Staten, Introducing strong metal-binding sites into somatotropin. Facile and efficient metal-affinity purification, Submitted.Google Scholar
  15. 15.
    E. Hochuli, W. Bannwarth, H. Dobeli, R. Gentz, and D. Stuber, Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate absorbent. Bio/Technology 6:1321 (1988).CrossRefGoogle Scholar
  16. 16.
    R. P. Ambler, Enzymatic hydrolyses with carboxypeptidases. In: Methods in Enzymology 25:143 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    T. P. Hopp, K. S. Prickett, V. L. Price, R. T. Libby, C. J. March, D. P. Cerretti, D. L. Urdal, and P. J. Conlon, A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6:1204 (1988).CrossRefGoogle Scholar
  18. 18.
    A. E. Namen, S. Lupton, K. Hjerrild, J. Wignall, D. Y. Mochizuki, A. Schmierer, B. Mosley, C. J. March, D. Urdal, S. Gillis, D. Cosman, and R. G. Goodwin. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 333:571 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Helmut M. Sassenfeld
    • 1
  • Michael Deeley
    • 1
  • John Rubero
    • 1
  • Janet C. Shriner
    • 1
  • Hassan Madani
    • 1
  1. 1.Department of Process DevelopmentImmunex Manufacturing CorporationSeattleUSA

Personalised recommendations