Cryogenic Thermometry — an Overview

  • S. Scott Courts
  • D. Scott Holmes
  • Philip R. Swinehart
  • Brad C. Dodrill
Part of the Applications of Cryogenic Technology book series (APCT, volume 10)


The period from about 1965 to 1975 saw the very rapid commercial introduction of several innovative cryogenic thermometers. The driving force was the need for convenient, accurate temperature sensing for the burgeoning laboratory, electronics, space and commercial markets that were gaining momentum in that time period. This paper considers only commercially available temperature sensors. A more comprehensive review of the dozens of existing cryogenic temperature sensors and measurement techniques has been written by Rubin, Brandt and Sample covering work through 1981 [1].


Gallium Arsenide Specific Sensitivity Carbon Glass Silicon Diode Moderate Magnetic Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. G. Rubin, B. L. Brandt and H. H. Sample, Cryogenic thermometry: a review of recent progress, II, Cryogenics 22: 491–503 (1982).CrossRefGoogle Scholar
  2. [2]
    W. B. Bloem, A cryogenic fast response thermometer, Cryogenics 24:159–165 (1984); commercial distribution by Rivac Technology by, Valkenswaard, Holland.Google Scholar
  3. [3]
    L. M. Besley and A. Szmyrka-Grzebyk, Stability studies on Kiev cryogenic germanium resistance thermometers, Rev. Sci. Instrum. 61: 1303–1307 (1990).CrossRefGoogle Scholar
  4. [4]
    J. K. Krause and P. R. Swinehart, Reliable wide range cryogenic diode thermometers, in: “Advances in Cryogenic Engineering, Vol. 31,” Plenum Press, New York (1985) 1247–1254.Google Scholar
  5. [5]
    B. C. Dodrill, J. K. Krause, P. R. Swinehart and V. Wang, Performance characteristics of silicon diode cryogenic temperature sensors, to be published in: “Applications of Cryogenic Technology - Vol. 10,” Plenum Press, New York (1990).Google Scholar
  6. [6]
    F. Pavese and P. Cresto, Search for thermometers with low magnetoresistive effects: platinum-cobalt alloy, Cryogenics 24: 464–470 (1984).CrossRefGoogle Scholar
  7. [7]
    P. L. Walstrom, Spatial dependence of thermoelectric voltages and reversible heats, Am. J. Phys. 56: 890–894 (1988).CrossRefGoogle Scholar
  8. [8]
    R. F. Harris-Lowe and R. R. Turkington, Comparison of calibrated temperature sensors: 4–300 K, Cryogenics 24: 531–535 (1984).CrossRefGoogle Scholar
  9. [9]
    H. Preston-Thomas, The international temperaure scale of 1990 (ITS-90), Metrologia 27: 3–10 (1990)CrossRefGoogle Scholar
  10. H. Preston-Thomas, Erratum, Metrologia 27: 107 (1990).CrossRefGoogle Scholar
  11. [10]
    J. K. Krause and B. C. Dodrill, Measurement system induced errors in diode thermometry, Rev. Sci. Instrum. 57: 661–665 (1986).CrossRefGoogle Scholar
  12. [11]
    L. M. Besley and H. H. Plumb, Stability of germanium resistance thermometers at 20 K, Rev. Sci. Instrum. 49: 68–73 (1978).PubMedCrossRefGoogle Scholar
  13. [12]
    E. G. Eckert and R. J. Goldstein, “Measurements in Heat Transfer,” 2nd Ed., Hemisphere Publishing Corporation, New York (1976).Google Scholar
  14. [13]
    R. L. Burden, J. D. Faires and A. C. Reynolds, “Numerical Analysis,” Prindle, Weber and Schmidt, Boston (1978).Google Scholar
  15. [14]
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, “Numerical Recipes,” Cambridge University Press, Cambridge (1986).Google Scholar
  16. [15]
    C. F. Gerald, “Applied Numerical Analysis, 2nd Ed.,” Addison-Wesley, Reading (1978).Google Scholar
  17. [16]
    H. J. Hoge, Useful procedure in least squares, and tests of some equations for thermistors, Rev. Sci. Instrum. 59: 975–979 (1988).CrossRefGoogle Scholar
  18. [17]
    L. G. Rubin, B. L. Brandt and H. H. Sample, Some practical solutions to measurement problems encountered at low temperatures and high magnetic fields, in: Advances in Cryogenic Engineering, Vol. 31, Plenum Press, New York (1986) 1221–1230.CrossRefGoogle Scholar
  19. [18]
    H. H. Sample, B. L. Brandt and L. G. Rubin, Low-temperature thermometry in high magnetic fields. V. Carbon-glass resistors, Rev. Sci. Instrum. 53: 1129–1136 (1982).CrossRefGoogle Scholar
  20. [19]
    T. Haruyama and R. Yoshizaki, Thin-film platinum resistance thermometer for use at low temperatures and in high magnetic fields, Cryogenics 26: 536–538 (1986).CrossRefGoogle Scholar
  21. [20]
    D. J. Blundell and B. W. Ricketson, The temperature of liquid nitrogen in cryostat dewars, Cryogenics, 19: 33–36 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S. Scott Courts
    • 1
  • D. Scott Holmes
    • 1
  • Philip R. Swinehart
    • 1
  • Brad C. Dodrill
    • 1
  1. 1.Lake Shore Cryotronics, Inc.WestervilleUSA

Personalised recommendations