Skip to main content

Part of the book series: Applications of Cryogenic Technology ((APCT,volume 10))

Abstract

Composite materials have been used in cryogenic applications for many years. Typically, cryogenic composites consist of G-10 type fiberglass material which has limited mechanical and thermal properties. More advanced applications with stringent design requirements require material properties beyond the capability of generally used composites. Composites utilizing advanced materials and fabrication methods provide designs with properties unobtainable with G-10. This paper gives mechanical and thermal design data and comparisons of various composite materials for cryogenic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.B. Kasen, Mechanical Performance of Graphite Reinforced Composites at Cryogenic Temperatures, in: “ Advances in Cryogenic Engineering Materials, Vol. 28,” R.P. Reed and A.F. Clark, eds., Plenum Press, New York (1982), pgs. 165–177.

    Chapter  Google Scholar 

  2. G. Hartwig, Reinforced Polymers At Low Temperatures, in: “ Advances in Cryogenic Engineering Materials, Vol. 28,” R.P. Reed and A.F. Clark, eds., Plenum Press, New York (1982), pgs. 183–186.

    Google Scholar 

  3. S.S. Wang and E.S.-M Chim, Degradation of Fiber-Reinforced Composite Materials, in “ Advances In Cryogenic Engineering Materials, Vol. 28,” R.P. Reed and A.F. Clark, eds., Plenum Press, New York (1982), pg. 192.

    Google Scholar 

  4. G. Hartwig and S. Knaak, “ Fiber-Epoxy Composites at Low Temperatures,” Cryogenics, 24: 639–647 (1984).

    Article  CAS  Google Scholar 

  5. M. Takeno et al., Thermal and Mechanical Properties of Advanced Composite Materials at Low Temperatures, in: “ Advances in Cryogenic Engineering Materials, Vol 32,” R.P. Reed and A.F. Clark, eds., Plenum Press, New York (1986), pgs. 217–224.

    Chapter  Google Scholar 

  6. K. Dahlerup-Peterson, Test of Composite Materials at Cryogenic Temperatures: Facilities and Results, in “ Advances in Cryogenic Engineering Materials, Vol. 26,” A.F. Clark and R.P. Reed, eds., Plenum Press, New York (1980), pg 303.

    Google Scholar 

  7. W. Weiss, Low Temperature Properties of Carbon Reinforced Epoxide Resins in: “ Non-metallic Materials and Composite at Low Temperatures 2,” Plenum Press, New York (1979), pg. 303.

    Google Scholar 

  8. K.A. Philpot and R.E. Randolph, The Use of Graphite/Epoxy Composites in Aerospace Structures Subject to Low Temperatures, in: “ Non-metallic Materials and Composites at Low Temperatures 2,” Plenum Press, New York (1982), pgs. 314–319.

    Google Scholar 

  9. G. Hartwig, “ Thermal Expansion of Fiber Composites,” Cryogenics, 28: 257 (1988).

    Google Scholar 

  10. M. Kramer and T. Nicol, Composite Materials for SSC Dipole Magnet Cryostats, in: “ Composites in Manufacturing 9,” SME (1990), pg. EM–90–101–4.

    Google Scholar 

  11. R.D. Kriz and L.L. Sparks, Performance of Alumina/Epoxy Thermal Isolation Straps, in: “ Advanced in Cryogenic Engineering Materials, Vol. 34,” R.P. Reed and A.F. Clark, eds., Plenum Press, New York (1988), pgs. 107–114.

    Google Scholar 

  12. M.B. Kasen et al., Mechanical, Electrical and Thermal Characterization of G11CR Glass-Cloth/Epoxy Laminates Between Temperature and 4 K, in: “ Advances in Cryogenic Engineering Materials, Vol. 26,” A.F. Clark and R.P. Reed, eds., Plenum Press, New York (1980), pgs. 237–241.

    Google Scholar 

  13. H. Hacker et al., Epoxies for Low Temperature Application Technology, in “ Advances in Cryogenic Engineering Materials, Vol. 30,” A.F. Clark and R.P. Reed, eds., Plenum Press, New York (1984), pg. 54.

    Google Scholar 

  14. F.W. Markley, J.A. Hoffman, D.P, Hoffman and D.P. Muniz, Cryogenic Properties of Basic Epoxy Resin Systems, in “ Advances in Cryogenic Engineering Materials, Vol. 32.” A.F. Clark and R.P. Reed, eds., Plenum Press, New York (1986), pg. 119.

    Google Scholar 

  15. H.D. Neubert, “ SQ5N Program Input Data”, Hans D. Neubert and Assoc., Anaheim Hills, CA.

    Google Scholar 

  16. D.J. Radcliffe and H.M. Rosenberg, “ The Thermal Conductivity of Glass-Fiber and Carbon Fiber/Epoxy Composites From 2 to 80 K,” Cryogenics 22: 85 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kramer, M.S. (1991). Composites for Cryogenics. In: Kelley, J.P. (eds) Applications of Cryogenic Technology. Applications of Cryogenic Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9232-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9232-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9234-8

  • Online ISBN: 978-1-4757-9232-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics