Advertisement

Vacuum Ultraviolet Circular Dichroism Studies of Peptides and Saccharides

  • Eugene S. Stevens

Abstract

Conventional circular dichroism (CD) spectrometers operate in the ultraviolet region to approximately 185 nm. Peptides and proteins have only two optically active backbone transitions in this region, the n-π* and the π-π* amide transitions, and even then the entire π-π* transition is not generally observable with commercial spectrometers since its envelope can extend to 175–185 nm. Vacuum ultraviolet circular dichroism (VUCD) measurements are required to observe the high energy component of the π-π* transition and the two higher energy transitions near 165 nm and 145 nm, all of which have been shown to be sensitive to molecular conformation.

Keywords

Pull Ulan Molecular Conformation Vacuum Ultraviolet Circular Dichroism Band Optical Rotatory Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schnepp, O., Allen, S. and Pearson, E., Rev. Sci. Instr., 41: 1136 (1970).CrossRefGoogle Scholar
  2. 2.
    Johnson, W.C. Jr., Rev. Sci. Instr., 42: 1283 (1971).CrossRefGoogle Scholar
  3. 3.
    Young, M.A. and Pysh(Stevens), E.S., Macromolecules, 6:790 (1973); Young, M.A., Ph.D. Thesis, Brown University (1974); Pysh(Stevens), E.S., Ann. Rev. Biophys. Bioeng., 5: 63 (1976).Google Scholar
  4. 4.
    Brahms, S., Brahms, J., Spoch, G. and Brock, A., Proc. Natl. Acad. Sci., 74: 3208 (1977);CrossRefGoogle Scholar
  5. Brahms, S. and Brahms, J., J. Mol. Biol., 138: 149 (1980).CrossRefGoogle Scholar
  6. 5.
    Duben, A. and Bush, C.A., Anal. Chem., 52: 635 (1980).CrossRefGoogle Scholar
  7. 6.
    Pysh(Stevens), E.S., in “Research Applications of Synchrotron Radiation,” Eds. R.E. Watson and M.L. Perlman, Brookhaven National Laboratory Study-Symposium, Upton, New York (1973) p. 54.Google Scholar
  8. 7.
    Sutherland, J.C. and Boles, T.T., Rev. Sci. Instrum., 49: 853 (1980).CrossRefGoogle Scholar
  9. 8.
    Snyder, P., Schatz, P.N., Rowe, E.M., “Natural and Magnetic Vacuum Ultraviolet Circular Dichroism Measurements at the Synchrotron Radiation Center University of Wisconsin-Madison, ”refer to this vol., 43.Google Scholar
  10. 9.
    Nelson, R.G. and Johnson, W.C., J. Am. Chem. Soc., 94:3343 (1972); 98: 4290, 4296 (1976).Google Scholar
  11. 10.
    Dickinson, H.R. and Johnson, C.W., J. Am. Chem. Soc., 96: 5050 (1974).CrossRefGoogle Scholar
  12. 11.
    Lewis, D.G. and Johnson, W.C., Biopolymers, 17: 1439 (1978).CrossRefGoogle Scholar
  13. 12.
    Zehfus, M.H. and Johnson, W.C., Biopolymers, 20: 1589 (1981).CrossRefGoogle Scholar
  14. 13.
    Hennessey, J.P., Johnson, W.C., Bakler, C., and Wood, H.G., Biochemistry, 21: 642 (1982).CrossRefGoogle Scholar
  15. 14.
    Sprecher, C.A. and Johnson, W.C., Biopolymers, 21: 321 (1982).CrossRefGoogle Scholar
  16. 15.
    Causley, G.C. and Johnson, C.W., Biopolymers, 21: 1763 (1982).CrossRefGoogle Scholar
  17. 16.
    Bertucci, C., Chiellini, E., Solvadori, P.A., and Johnson, W.C., Macromolecules, 16: 507 (1983).CrossRefGoogle Scholar
  18. 17.
    Causley, G.C., Staskus, P.W., and Johnson, W.C., Biopolymers, 22: 945 (1983).CrossRefGoogle Scholar
  19. 18.
    Dougherty, A.M., Causley, G.C., and Johnson, W.C., Proc. Natl. Acad. Sci., 80: 2193 (1983).CrossRefGoogle Scholar
  20. 19.
    Bowman, R.L., Kellerman, M., and Johnson, W.C., Biopolymers, 22: 1045 (1983).CrossRefGoogle Scholar
  21. 20.
    Brahmachari, S.K., Ananthanarayanan, V.S., Brahms, S., Brahms, J., Rapaka, R.S., and Bhatnagar, R.S., Biochem. Biophys. Res. Commun., 86: 605 (1979).CrossRefGoogle Scholar
  22. 21.
    Brahms, S. and Brahms, J.G., J. Chim. Phys., 76: 841 (1979).Google Scholar
  23. 22.
    Brahms, S. and Brahms, J.G., J. Mol. Biol., 138: 149 (1980).CrossRefGoogle Scholar
  24. 23.
    Brahms, S. and Brahms, J.G., Biomol. Struct. Conform., Funct., Eval., Prac. Int. Symp., Eds. S. Ramachandran, G.E., Subramanian, and N. Yathindra, Pergamon, Oxford, 2:31 (1981).Google Scholar
  25. 24.
    Salesse, R., Combarnous, Y., Brahms, S., and Garnier, J., J. Arch. Biochem. Biophys., 209: 480 (1981).CrossRefGoogle Scholar
  26. 25.
    Brahms, S., Vergne, J., Brahms, J.G., DiCapua, E., Bucher, P., and Koller T., J. Mol. Biol., 162: 473 (1982).CrossRefGoogle Scholar
  27. 26.
    Brahms, S., Vergnes, J., Brahms, J.G., DiCapua, E., Bucher, P., and Koller, T., Cold Spring Harbor Symp. Quant. Biol., 1982, 47: 119 (1983).CrossRefGoogle Scholar
  28. 27.
    Bush, C.A., Duben, A., and Ralapati, S., Biochem., 19: 501 (1980).CrossRefGoogle Scholar
  29. 28.
    Bush, C.A., Feeney, R.E., Osuga, D.T., Ralapati, S., and Yeh, Y., Int. J. Peptide Protein Res., 17: 125 (1981).CrossRefGoogle Scholar
  30. 29.
    Bush, C.A. and Ralapati, S., ACS Symposium Series, No, 150, Ed. D.A. Brant, American Chemical Society, Washington, D.C. (1981) p. 293.Google Scholar
  31. 30.
    Bush, C.A. Ralapati, S., and Duben, A., Anal. Chem., 53: 1140 (1981).CrossRefGoogle Scholar
  32. 31.
    Ahmed, A.I., Osuga, D.T., Yeh, Y., Bush, C.A., Matson, G.M., Yamasaki, R.B., and Feeney, R.E., Cyro-Lett., 2: 263 (1981).Google Scholar
  33. 32.
    Bush, C.A., Dua, V.K., Ralapati, S., Warren, C.D., Spik, G., Strecker, G., and Mantreuil, J., J. Biol. Chem., 257: 8199 (1982).Google Scholar
  34. 33.
    Cowman, M., Bush, C.A., and Balazs, E.A., Biopolymers, 22: 1319 (1983).CrossRefGoogle Scholar
  35. 34.
    Sutherland, J.C., Griffin, K.P., Keck, P.C., and Takacs, P.Z., Proc. Natl. Acad. Sci., USA, 4801 (1981).Google Scholar
  36. 35.
    Sutherland, J.C., Keck, P.C., Griffin, K.P., and Takacs, P.Z., Nucl. Instrum. Methods Phys. Rev., 195: 375 (1982).CrossRefGoogle Scholar
  37. 36.
    Sutherland, J.C. and Griffin, K.P., Biopolymers, 22: 1445 (1983).CrossRefGoogle Scholar
  38. 37.
    Tobin, M.B., Kuebler, N.A., and Pao, Y.-H., Rev. Sci. Instrum., 37: 922 (1966).CrossRefGoogle Scholar
  39. 38.
    Samson, J.A.R., “Techniques of Vacuum Ultraviolet Spectroscopy,” John Wiley and Sons, New York (1967).Google Scholar
  40. 39.
    Cassim, J.Y. and Yang, J.T., Biochemistry, 8: 1947 (1969).CrossRefGoogle Scholar
  41. 40.
    Young, M.A. and Pysh(Stevens), E.S., J. Am. Chem. Soc., 97: 5100 (1975).CrossRefGoogle Scholar
  42. 41.
    Pysh(Stevens), E.S., Proc. Natl. Acad. Sci. (USA), 56: 825 (1966).Google Scholar
  43. 42.
    Pysh(Stevens), E.S., J. Chem. Phys., 52: 4723 (1970).Google Scholar
  44. 43.
    Rosenheck, K. and Sommer, B., J. Chem. Phys., 46: 532 (1967).CrossRefGoogle Scholar
  45. 44.
    Balcerski, J.S., Pysh(Stevens), E.S., Bonora, G.M. and Toniolo, C., J. Am. Chem. Soc., 98: 3470 (1976).CrossRefGoogle Scholar
  46. 45.
    Toniolo, C., Bonora, G.M., Palumbo, M., and Pysh(Stevens), E.S., in “Peptides 1976, Proc. 14th European Peptide Symposium,” Ed. A. Loffat,Univ. De Bruxelles, Namur, Belgium (1976) p. 597.Google Scholar
  47. 46.
    Toniolo, C. Bonora, G.M., Grisma, M., Bertanzon, F., and Stevens, E.S., Makromol. Chemie, 182: 3149 (1981).CrossRefGoogle Scholar
  48. 47.
    Kelly, M.M., Pysh(Stevens), E.X., Bonora, G.M., and Toniolo, C., J. Am. Chem. Soc., 99: 3264 (1977).CrossRefGoogle Scholar
  49. 48.
    Paskowski, D.J., Stevens, E.S., Bonora, G.M., and Toniolo, Biochim. Biophys. Acta, 535: 188 (1978).CrossRefGoogle Scholar
  50. 49.
    Liang, J.N., Stevens, E.S., Bonora, G.M., and Toniolo, C., in “Proc. Sixth American Peptide Symposium (Peptides: Structure and Biological Function),” Eds. E. Gross and J. Meienhofer, Pierce Chemical Co. (1979) p. 245.Google Scholar
  51. 50.
    Coffey, R.T., Stevens, E.S., Toniolo, C., and Bonora, G.M., Makromol. Chemie, 182: 941 (1981).CrossRefGoogle Scholar
  52. 51.
    Palumbo, M., Bonora, G.M., Toniolo, C., Peggion, E., and Stevens, E.S., in “Proc. Fifth American Peptide Symposium,” Ed. M. Goodman (1978) p. 399.Google Scholar
  53. 52.
    Toniolo, C., Bonora, G.M., Palumbo, M., Peggion, E. and Stevens, E.S., Biopolymers, 17: 1713 (1978).CrossRefGoogle Scholar
  54. 53.
    Chou, K.C., Pottle, M., Nemethy, G., Ueda, Y., and Scheraga, H.A., J. Mol. Biol., 162: 89 (1982).CrossRefGoogle Scholar
  55. 54.
    Chou, K.C. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 79: 7047 (1982).CrossRefGoogle Scholar
  56. 55.
    Chou, K.C., Nemethy, G. and Scheraga, H.A., J. Mol. Biol., 168: 389 (1983).CrossRefGoogle Scholar
  57. 56.
    Balcerski, J.S., Pysh(Stevens), E.S., Chi Chen, G., and Yang, J.T., J. Am. Chem. Soc., 97: 6274 (1975).CrossRefGoogle Scholar
  58. 57.
    Liang, J.N., Stevens, E.S., Morris, E.R., and Rees, D.A., Bio-polymers, 18: 327 (1979).Google Scholar
  59. 58.
    Stipanovic, A.J., Stevens, E.S., and Gekko, K., Macromolecules, 13: 1471 (1980).CrossRefGoogle Scholar
  60. 59.
    Buffington, L.A., Stevens, E.S., Morris, E.R., and Rees, D.A., Int. J. Biolog. Macromolecules, 2: 199 (1980).CrossRefGoogle Scholar
  61. 60.
    Stipanovic, A.J., and Stevens, E.S., Int. J. Biolog. Macromolecules, 2: 209 (1980).CrossRefGoogle Scholar
  62. 61.
    Stipanovic, A.J. and Stevens, E.S., in “ACS Symposium Series No. 150,” Ed. D.A. Brand, American Chemical Society, Washington, D.C. (1981) p. 303.Google Scholar
  63. 62.
    Stipanovic, A.J. and Stevens, E.S., Biopolymers, 20: 1183 (1981).CrossRefGoogle Scholar
  64. 63.
    Stipanovic, A.J. and Stevens, E.S., J. App. Polymer Sci., 37: 277 (1983).Google Scholar
  65. 64.
    Buffington, L.A., Pysh(Stevens), E.S., Chakrabarti, B., and Balazs, E.A., J. Am. Chem. Soc., 99:1730 (1977)•Google Scholar
  66. 65.
    Buffington, L.A. and Stevens, E.S., J. Am. Chem. Soc., 101: 5159 (1979).CrossRefGoogle Scholar
  67. 66.
    Liang, J.N., Stevens, E.S., Frangou, S.A., Morris, E.R. and Rees, D.A., Int. J. Biolog. Macromolecules, 2: 204 (1980).CrossRefGoogle Scholar
  68. 67.
    Stipanovic, A.J. and Stevens, E.S., Biopolymers, 20: 1565 (1981).CrossRefGoogle Scholar
  69. 68.
    Liang, J.N. and Stevens, E.S., Int. J. Biolog. Macromol., 4: 316 (1982).CrossRefGoogle Scholar
  70. 69.
    Dea, I.C.M. and Morrison, A., Adv. Carbohydr. Chem. Biochem., 31: 241 (1975).CrossRefGoogle Scholar
  71. 70.
    Frei, E. and Preston, R.D., Proc. Roy. Soc. (B), 169: 127 (1968).CrossRefGoogle Scholar
  72. 71.
    Palmer, K.J. and Ballantyne, M., J. Am. Chem. Soc., 72: 736 (1950).CrossRefGoogle Scholar
  73. 72.
    Sundararajan, P.R. and Rao, V.S.R., Biopolymers, 9: 1239 (1970).CrossRefGoogle Scholar
  74. 73.
    Sharman, W.R., Richards, E.L., and Malcolm, G.N., Biopolymers, 17: 2817 (1978).CrossRefGoogle Scholar
  75. 74.
    Morris, E.R. and Sanderson, G.R., in “New Techniques in Biophysics and Cell Biology,” Eds. R.H. Pain and B.J. Smith, Wiley, London (1973) pp. 113–147.Google Scholar
  76. 75.
    Texter, J. and Stevens, E.S., J. Chem. Phys., 69: 1680 (1978).CrossRefGoogle Scholar
  77. 76.
    Texter, J. and Stevens, E.S., J. Chem. Phys., 70: 1140 (1979).CrossRefGoogle Scholar
  78. 77.
    Texter, J. and Stevens, E.S., J. Org. Chem., 44: 3222 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Eugene S. Stevens
    • 1
  1. 1.Department of ChemistryState University of New YorkBinghamtonUSA

Personalised recommendations