Advertisement

Abstract

The purpose of this meeting is to discuss how circularly polarized synchrotron radiation could be used to learn more about molecules. Synchrotron radiation opens the possibility for high fluxes of circularly polarized light at very high energy. Thus the exciting new techniques such as circular intensity differential scattering, and circular differential microscopy would benefit greatly from a synchrotron ring generating circular polarized light. I believe such radiation will prove equally useful for that standard technique, circular dichroism of electronic absorption bands. Time constants of 10 to 60 seconds are the norm on conventional instrumentation so that it may take a number of hours to scan a CD spectrum. The large increase in light intensity from a synchrotron source allows shorter time constants and more rapid scanning, and smaller spectral slit widths for increased resolution. More rapid scanning offers the potential of doing kinetic studies on changes in secondary structure for biopolymers.

Keywords

Secondary Structure Hyaluronic Acid Circular Dichroism Singular Value Decomposition Synchrotron Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Bowman, M. Kellerman, and W. C. Johnson, Jr., Biopolymers 22: 1045–2070 (1983).CrossRefGoogle Scholar
  2. 2.
    T. M. Hooker, Jr., P. M. Bayley, W. Radding, and J. A. Schellman, Biopolymers 13: 549–566 (1974).CrossRefGoogle Scholar
  3. 3.
    R. G. Nelson and W. C. Johnson, Jr., J. Am. Chem. Soc. 94: 3343–3345 (1972).CrossRefGoogle Scholar
  4. 4.
    R. G. Nelson and W. C. Johnson, Jr., J. Am. Chem. Soc. 98: 4290–4295 (1976).CrossRefGoogle Scholar
  5. 5.
    R. G. Nelson and W. C. Johnson, Jr., J. Am. Chem. Soc. 98: 4296–4301 (1976).CrossRefGoogle Scholar
  6. 6.
    D. G. Lewis and W. C. Johnson, Jr., Biopolymers 17: 1439–1449 (1978).CrossRefGoogle Scholar
  7. 7.
    P. Zugenmaier and A. Sarko, Biopolymers 12: 435–444 (1973).CrossRefGoogle Scholar
  8. 8.
    K. G. Goebel and D. A. Brant, Macromolecules 3: 634–643 (1970);CrossRefGoogle Scholar
  9. C. V. Goebel, W. L. Dimpfl, and D. A. Brant, Macromolecules 3: 634–643 (1970);CrossRefGoogle Scholar
  10. D. A. Brant and W. L. Dimpfl, Macromolecules 3: 644–654 (1970).CrossRefGoogle Scholar
  11. 9.
    V. S. R. Rao, N. Yathindra and P. R. Sundararajan, Biopolymers 8: 325–333 (1969).CrossRefGoogle Scholar
  12. 10.
    P. Staskus and W. C. Johnson, Jr., unpublished research.Google Scholar
  13. 11.
    L. A. Buffington, E. S. Pysh, B. Chakrabarti, and E. A. Balazs, J. Amer. Chem. Soc. 99: 1730–1734 (1977).CrossRefGoogle Scholar
  14. 12.
    C. A. Sprecher and W. C. Johnson, Jr., Biopolymers 16: 2243–2264 (1977).CrossRefGoogle Scholar
  15. 13.
    C. A. Sprecher, W. A. Baase, and W. C. Johnson, Jr., Biopolymers 18: 1009–1019 (1979).CrossRefGoogle Scholar
  16. 14.
    J. P. Hennessey, Jr. and W. C. Johnson, Jr., Biochemistry 20: 1085–1094 (1981).CrossRefGoogle Scholar
  17. 15.
    B. Noble and J. W. Daniel, “Applied Linear Algebra,” 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ (1977).Google Scholar
  18. 16.
    P. Manavalan, W. C. Johnson, Jr. and P. Taylor, unpublished research.Google Scholar
  19. 17.
    P. Manavalan, W. C. Johnson, Jr. and P. D. Johnston, FEBS Letters, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • W. Curtis JohnsonJr.
    • 1
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations